A Multi-level Features Fusion Network for Detecting Obstructive Sleep Apnea Hypopnea Syndrome

被引:0
作者
Lv, Xingfeng [1 ]
Li, Jinbao [2 ]
机构
[1] Heilongjiang Univ, Sch Comp Sci & Technol, Harbin, Peoples R China
[2] Qilu Univ Technol, Shandong Artificial Intelligence Inst, Shandong Acad Sci, Jinan, Peoples R China
来源
ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2020, PT III | 2020年 / 12454卷
关键词
Obstructive Sleep Apnea Hypopnea Syndrome; Multi-level features fusion network; Deep learning; Deep features; Shallow features;
D O I
10.1007/978-3-030-60248-2_34
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Obstructive Sleep Apnea Hypopnea Syndrome (OSAHS) is the most common sleep disorder. If not treated in time, OSAHS will lead to high blood pressure, heart or cerebrovascular diseases. At present, the commend method is based on deep learning which can extract deep features. But it does not make full use of the influence of shallow features on sleep classification. Therefore, this paper proposes a Multi-Level Features Fusion Network (MLF2N) model to detect OSAHS. MLF2N can learn different levels of features from the different respiratory signals. In this paper, 2056 subjects were classified as Obstructive Sleep Apnea, Hypopnea and Normal sleep on the Multi Ethical Study of Atherosclerosis (MESA) data set using this model. The experimental results show that the accuracy of the three respiratory signals can reach 85.5% through this model.
引用
收藏
页码:509 / 519
页数:11
相关论文
共 19 条
[1]   Scaling Up Scientific Discovery in Sleep Medicine: The National Sleep Research Resource [J].
Dean, Dennis A., II ;
Goldberger, Ary L. ;
Mueller, Remo ;
Kim, Matthew ;
Rueschman, Michael ;
Mobley, Daniel ;
Sahoo, Satya S. ;
Jayapandian, Catherine P. ;
Cui, Licong ;
Morrical, Michael G. ;
Surovec, Susan ;
Zhang, Guo-Qiang ;
Redline, Susan .
SLEEP, 2016, 39 (05) :1151-1164
[2]   Linear and nonlinear analysis of airflow recordings to help in sleep apnoea-hypopnoea syndrome diagnosis [J].
Gutierrez-Tobal, G. C. ;
Hornero, R. ;
Alvarez, D. ;
Marcos, J. V. ;
del Campo, F. .
PHYSIOLOGICAL MEASUREMENT, 2012, 33 (07) :1261-1275
[3]   Utility of AdaBoost to Detect Sleep Apnea-Hypopnea Syndrome From Single-Channel Airflow [J].
Gutierrez-Tobal, Gonzalo C. ;
Alvarez, Daniel ;
del Campo, Felix ;
Hornero, Roberto .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (03) :636-646
[4]  
Haidar R., 2018, P INT JT C NEURAL NE, P1, DOI [10.1109/IJCNN.2018.8489248, DOI 10.1109/IJCNN.2018.8489248]
[5]   Sleep Apnea Event Detection from Nasal Airflow Using Convolutional Neural Networks [J].
Haidar, Rim ;
Koprinska, Irena ;
Jeffries, Bryn .
NEURAL INFORMATION PROCESSING, ICONIP 2017, PT V, 2017, 10638 :819-827
[6]   Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study [J].
Heinzer, R. ;
Vat, S. ;
Marques-Vidal, P. ;
Marti-Soler, H. ;
Andries, D. ;
Tobback, N. ;
Mooser, V. ;
Preisig, M. ;
Malhotra, A. ;
Waeber, G. ;
Vollenweider, P. ;
Tafti, M. ;
Haba-Rubio, J. .
LANCET RESPIRATORY MEDICINE, 2015, 3 (04) :310-318
[7]  
Hinton GE., 2012, ARXIV PREPRINT ARXIV
[8]   Real-Time Adaptive Apnea and Hypopnea Event Detection Methodology for Portable Sleep Apnea Monitoring Devices [J].
Koley, Bijoy Laxmi ;
Dey, Debangshu .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (12) :3354-3363
[9]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[10]   Sleep Apnea Detection Based on Thoracic and Abdominal Movement Signals of Wearable Piezoelectric Bands [J].
Lin, Yin-Yan ;
Wu, Hau-Tieng ;
Hsu, Chi-An ;
Huang, Po-Chiun ;
Huang, Yuan-Hao ;
Lo, Yu-Lun .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (06) :1533-1545