Application of artificial intelligence to the electrocardiogram

被引:137
作者
Attia, Zachi, I [1 ]
Harmon, David M. [2 ]
Behr, Elijah R. [3 ,4 ,5 ,6 ]
Friedman, Paul A. [1 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, 200 First St SW, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Internal Med, Sch Grad Med Educ, 200 First St SW, Rochester, MN 55905 USA
[3] St Georges Univ London, Mol & Clin Sci Inst, Cardiol Res Ctr, Blackshaw Rd, London SW17 0QT, England
[4] St Georges Univ London, Mol & Clin Sci Inst, Cardiovasc Clin Acad Grp, Blackshaw Rd, London SW17 0QT, England
[5] St Georges Univ Hosp NHS Fdn Trust, Blackshaw Rd, London SW17 0QT, England
[6] Mayo Clin Healthcare, 15 Portland Pl, London W1B 1PT, England
关键词
Artificial intelligence; Machine learning; Electrocardiograms; Digital health; HYPERTROPHIC CARDIOMYOPATHY; ATRIAL-FIBRILLATION; EJECTION FRACTION; DYSFUNCTION; ECG; ALGORITHM; CRITERIA; STROKE;
D O I
10.1093/eurheartj/ehab649
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence (AI) has given the electrocardiogram (ECG) and clinicians reading them super-human diagnostic abilities. Trained without hard-coded rules by finding often subclinical patterns in huge datasets, AI transforms the ECG, a ubiquitous, non-invasive cardiac test that is integrated into practice workflows, into a screening toot and predictor of cardiac and non-cardiac diseases, often in asymptomatic individuals. This review describes the mathematical background behind supervised AI algorithms, and discusses selected AI ECG cardiac screening algorithms including those for the detection of left ventricular dysfunction, episodic atrial fibrillation from a tracing recorded during normal sinus rhythm, and other structural and valvular diseases. The ability to learn from big data sets, without the need to understand the biological mechanism, has created opportunities for detecting non-cardiac diseases as COVID-19 and introduced challenges with regards to data privacy. Like all medical tests, the AI ECG must be carefully vetted and validated in real-world clinical environments. Finally, with mobile form factors that allow acquisition of medical-grade ECGs from smartphones and wearables, the use of AI may enable massive scalability to democratize healthcare. [GRAPHICS] .
引用
收藏
页码:4717 / +
页数:15
相关论文
共 59 条
  • [1] Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea
    Adedinsewo, Demilade
    Carter, Rickey E.
    Attia, Zachi
    Johnson, Patrick
    Kashou, Anthony H.
    Dugan, Jennifer L.
    Albus, Michael
    Sheele, Johnathan M.
    Bellolio, Fernanda
    Friedman, Paul A.
    Lopez-Jimenez, Francisco
    Noseworthy, Peter A.
    [J]. CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (08) : E008437
  • [2] Alam U., 2010, Br. J. Cardiol, V17, P8
  • [3] Handling of uncertainty in medical data using machine learning and probability theory techniques: a review of 30 years (1991-2020)
    Alizadehsani, Roohallah
    Roshanzamir, Mohamad
    Hussain, Sadiq
    Khosravi, Abbas
    Koohestani, Afsaneh
    Zangooei, Mohammad Hossein
    Abdar, Moloud
    Beykikhoshk, Adham
    Shoeibi, Afshin
    Zare, Assef
    Panahiazar, Maryam
    Nahavandi, Saeid
    Srinivasan, Dipti
    Atiya, Amir F.
    Acharya, U. Rajendra
    [J]. ANNALS OF OPERATIONS RESEARCH, 2024, 339 (03) : 1077 - 1118
  • [4] Apple, Differential privacy overview
  • [5] External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction
    Attia, Itzhak Zachi
    Tseng, Andrew S.
    Benavente, Ernest Diez
    Medina-Inojosa, Jose R.
    Clark, Taane G.
    Malyutina, Sofia
    Kapa, Suraj
    Schirmer, Henrik
    Kudryavtsev, Alexander, V
    Noseworthy, Peter A.
    Carter, Rickey E.
    Ryabikov, Andrew
    Perel, Pablo
    Friedman, Paul A.
    Leon, David A.
    Lopez-Jimenez, Francisco
    [J]. INTERNATIONAL JOURNAL OF CARDIOLOGY, 2021, 329 : 130 - 135
  • [6] Artificial Intelligence ECG to Detect Left Ventricular Dysfunction in COVID-19: A Case Series
    Attia, Zachi, I
    Kapa, Suraj
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    [J]. MAYO CLINIC PROCEEDINGS, 2020, 95 (11) : 2464 - 2466
  • [7] Attia ZI, 2019, CIRCULATION, V140
  • [8] Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs
    Attia, Zachi, I
    Friedman, Paul A.
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Ladewig, Dorothy J.
    Satam, Gaurav
    Pellikka, Patricia A.
    Munger, Thomas M.
    Asirvatham, Samuel J.
    Scott, Christopher G.
    Carter, Rickey E.
    Kapa, Suraj
    [J]. CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2019, 12 (09)
  • [9] An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
    Attia, Zachi, I
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Asirvatham, Samuel J.
    Deshmukh, Abhishek J.
    Gersh, Bernard J.
    Carter, Rickey E.
    Yao, Xiaoxi
    Rabinstein, Alejandro A.
    Erickson, Brad J.
    Kapa, Suraj
    Friedman, Paul A.
    [J]. LANCET, 2019, 394 (10201) : 861 - 867
  • [10] Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction
    Attia, Zachi I.
    Kapa, Suraj
    Yao, Xiaoxi
    Lopez-Jimenez, Francisco
    Mohan, Tarun L.
    Pellikka, Patricia A.
    Carter, Rickey E.
    Shah, Nilay D.
    Friedman, Paul A.
    Noseworthy, Peter A.
    [J]. JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2019, 30 (05) : 668 - 674