Two-stage carbon distribution and cofactor generation for improving l-threonine production of Escherichia coli

被引:42
作者
Liu, Jiaheng [1 ,2 ,3 ]
Li, Huiling [1 ,2 ,3 ]
Xiong, Hui [1 ,2 ,3 ]
Xie, Xixian [4 ]
Chen, Ning [4 ]
Zhao, Guangrong [1 ,2 ,3 ]
Caiyin, Qinggele [1 ,2 ]
Zhu, Hongji [1 ,2 ]
Qiao, Jianjun [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Key Lab Syst Bioengn, Minist Educ, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Tianjin, Peoples R China
[3] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, SynBio Res Platform, Tianjin, Peoples R China
[4] Tianjin Univ Sci & Technol, Natl & Local United Engn Lab Metab Control Fermen, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon distribution; cofactor generation; Escherichia coli; l-threonine; metabolic engineering; CORYNEBACTERIUM-GLUTAMICUM; METABOLIC FLUX; EFFICIENT PRODUCTION; GENOME SEQUENCE; PATHWAY; DEHYDROGENASE; OVEREXPRESSION; ENZYME; CONSTRUCTION; FORMATE;
D O I
10.1002/bit.26844
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
L-Threonine, a kind of essential amino acid, has numerous applications in food, pharmaceutical, and aquaculture industries. Fermentative l-threonine production from glucose has been achieved in Escherichia coli. However, there are still several limiting factors hindering further improvement of l-threonine productivity, such as the conflict between cell growth and production, byproduct accumulation, and insufficient availability of cofactors (adenosine triphosphate, NADH, and NADPH). Here, a metabolic modification strategy of two-stage carbon distribution and cofactor generation was proposed to address the above challenges in E. coli THRD, an l-threonine producing strain. The glycolytic fluxes towards tricarboxylic acid cycle were increased in growth stage through heterologous expression of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and citrate synthase, leading to improved glucose utilization and growth performance. In the production stage, the carbon flux was redirected into l-threonine synthetic pathway via a synthetic genetic circuit. Meanwhile, to sustain the transaminase reaction for l-threonine production, we developed an l-glutamate and NADPH generation system through overexpression of glutamate dehydrogenase, formate dehydrogenase, and pyridine nucleotide transhydrogenase. This strategy not only exhibited 2.02- and 1.21-fold increase in l-threonine production in shake flask and bioreactor fermentation, respectively, but had potential to be applied in the production of many other desired oxaloacetate derivatives, especially those involving cofactor reactions.
引用
收藏
页码:110 / 120
页数:11
相关论文
共 49 条
[1]   Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD+-dependent formate dehydrogenase [J].
Balzer, Grant J. ;
Thakker, Chandresh ;
Bennett, George N. ;
San, Ka-Yiu .
METABOLIC ENGINEERING, 2013, 20 :1-8
[2]   Importance of NADPH Supply for Improved L-Valine Formation in Corynebacterium glutamicum [J].
Bartek, Tobias ;
Blombach, Bastian ;
Zoennchen, Enrico ;
Makus, Pia ;
Lang, Siegmund ;
Eikmanns, Bernhard J. ;
Oldiges, Marco .
BIOTECHNOLOGY PROGRESS, 2010, 26 (02) :361-371
[3]   The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp lactis IL1403 [J].
Bolotin, A ;
Wincker, P ;
Mauger, S ;
Jaillon, O ;
Malarme, K ;
Weissenbach, J ;
Ehrlich, SD ;
Sorokin, A .
GENOME RESEARCH, 2001, 11 (05) :731-753
[4]   Engineering dynamic pathway regulation using stress-response promoters [J].
Dahl, Robert H. ;
Zhang, Fuzhong ;
Alonso-Gutierrez, Jorge ;
Baidoo, Edward ;
Batth, Tanveer S. ;
Redding-Johanson, Alyssa M. ;
Petzold, Christopher J. ;
Mukhopadhyay, Aindrila ;
Lee, Taek Soon ;
Adams, Paul D. ;
Keasling, Jay D. .
NATURE BIOTECHNOLOGY, 2013, 31 (11) :1039-+
[5]   Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for the production of L-threonine [J].
Dong, Xunyan ;
Quinn, Peter J. ;
Wang, Xiaoyuan .
BIOTECHNOLOGY ADVANCES, 2011, 29 (01) :11-23
[6]   Improving lycopene production in Escherichia coli by engineering metabolic control [J].
Farmer, WR ;
Liao, JC .
NATURE BIOTECHNOLOGY, 2000, 18 (05) :533-537
[7]  
FURUKAWA S, 1988, APPL MICROBIOL BIOT, V29, P550
[8]   Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit [J].
Gupta, Apoorv ;
Reizman, Irene M. Brockman ;
Reisch, Christopher R. ;
Prather, Kristala L. J. .
NATURE BIOTECHNOLOGY, 2017, 35 (03) :273-+
[9]   Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110 [J].
Hayashi, Koji ;
Morooka, Naoki ;
Yamamoto, Yoshihiro ;
Fujita, Katsutoshi ;
Isono, Katsumi ;
Choi, Sunju ;
Ohtsubo, Eiichi ;
Baba, Tomoya ;
Wanner, Barry L. ;
Mori, Hirotada ;
Horiuchi, Takashi .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0007
[10]   The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens [J].
Hong, SH ;
Kim, JS ;
Lee, SY ;
In, YH ;
Choi, SS ;
Rih, JK ;
Kim, CH ;
Jeong, H ;
Hur, CG ;
Kim, JJ .
NATURE BIOTECHNOLOGY, 2004, 22 (10) :1275-1281