Critical points of the O(n) loop model on the martini and the 3-12 lattices

被引:2
作者
Ding, Chengxiang [2 ]
Fu, Zhe [1 ]
Guo, Wenan [1 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[2] Anhui Univ Technol, Dept Phys, Maanshan 243002, Peoples R China
来源
PHYSICAL REVIEW E | 2012年 / 85卷 / 06期
关键词
EXCLUDED-VOLUME PROBLEM; SELF-AVOIDING WALKS; CRITICAL-BEHAVIOR; CONFORMAL-INVARIANCE; CONNECTIVE CONSTANTS; LOWER BOUNDS; ISING-MODEL; POTTS; EXPONENTS;
D O I
10.1103/PhysRevE.85.062101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive the critical line of the O(n) loop model on the martini lattice as a function of the loop weight n basing on the critical points on the honeycomb lattice conjectured by Nienhuis [Phys. Rev. Lett. 49, 1062 (1982)]. In the limit n -> 0 we prove the connective constant mu = 1.750 564 5579 ... of self-avoiding walks on the martini lattice. A finite-size scaling analysis based on transfer matrix calculations is also performed. The numerical results coincide with the theoretical predictions with a very high accuracy. Using similar numerical methods, we also study the O(n) loop model on the 3-12 lattice. We obtain similarly precise agreement with the critical points given by Batchelor [J. Stat. Phys. 92, 1203 (1998)].
引用
收藏
页数:4
相关论文
共 38 条
[1]   UNIVERSAL TERM IN THE FREE-ENERGY AT A CRITICAL-POINT AND THE CONFORMAL ANOMALY [J].
AFFLECK, I .
PHYSICAL REVIEW LETTERS, 1986, 56 (07) :746-748
[2]   Upper and lower bounds for the connective constants of self-avoiding walks on the Archimedean and Laves lattices [J].
Alm, SE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (10) :2055-2080
[3]   Bounds for the connective constant of the hexagonal lattice [J].
Alm, SE ;
Parviainen, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (03) :549-560
[4]  
[Anonymous], 1957, Proc Camb Phil Soc, DOI 10.1017/S0305004100032692
[5]  
[Anonymous], 1987, Phase Transitions and Critical Phenomena
[6]  
Barber MN., 1983, PHASE TRANSITIONS CR, Vvol 8
[7]   CONFORMAL-INVARIANCE AND CRITICAL-BEHAVIOR OF THE O(N) MODEL ON THE HONEYCOMB LATTICE [J].
BATCHELOR, MT ;
BLOTE, HWJ .
PHYSICAL REVIEW B, 1989, 39 (04) :2391-2402
[8]   CONFORMAL ANOMALY AND SCALING DIMENSIONS OF THE O(N) MODEL FROM AN EXACT SOLUTION ON THE HONEYCOMB LATTICE [J].
BATCHELOR, MT ;
BLOTE, HWJ .
PHYSICAL REVIEW LETTERS, 1988, 61 (02) :138-140
[9]   The O(n) loop model on the 3-12 lattice [J].
Batchelor, MT .
JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (5-6) :1203-1208
[10]   BETHE-ANSATZ RESULTS FOR A SOLVABLE O(N) MODEL ON THE SQUARE LATTICE [J].
BATCHELOR, MT ;
NIENHUIS, B ;
WARNAAR, SO .
PHYSICAL REVIEW LETTERS, 1989, 62 (21) :2425-2428