A Radiomics Approach to Computer-Aided Diagnosis with Cardiac Cine-MRI

被引:29
作者
Cetin, Irem [1 ]
Sanroma, Gerard [1 ]
Petersen, Steffen E. [3 ]
Napel, Sandy [4 ]
Camara, Oscar [1 ]
Gonzalez Ballester, Miguel-Angel [1 ,2 ]
Lekadir, Karim [1 ]
机构
[1] Univ Pompeu Fabra, BCN MedTech, Barcelona, Spain
[2] Catalan Inst Res & Adv Studies ICREA, Barcelona, Spain
[3] Queen Mary Univ London, William Harvey Res Inst, London, England
[4] Stanford Univ, Sch Med, Dept Radiol, Stanford, CA 94305 USA
来源
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES | 2018年 / 10663卷
关键词
Cardiac MRI; Machine learning; SVM; Diagnosis Radiomics; SHAPE;
D O I
10.1007/978-3-319-75541-0_9
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Computer-aided diagnosis of cardiovascular diseases (CVDs) with cine-MRI is an important research topic to enable improved stratification of CVD patients. However, current approaches that use expert visualization or conventional clinical indices can lack accuracy for borderline classications. Advanced statistical approaches based on eigen-decomposition have been mostly concerned with shape and motion indices. In this paper, we present a new approach to identify CVDs from cine-MRI by estimating large pools of radiomic features (statistical, shape and textural features) encoding relevant changes in anatomical and image characteristics due to CVDs. The calculated cine-MRI radiomic features are assessed using sequential forward feature selection to identify the most relevant ones for given CVD classes (e.g. myocardial infarction, cardiomyopathy, abnormal right ventricle). Finally, advanced machine learning is applied to suitably integrate the selected radiomics for final multi-feature classification based on Support Vector Machines (SVMs). The proposed technique was trained and cross-validated using 100 cine-MRI cases corresponding to five different cardiac classes from the ACDC MICCAI 2017 challenge (https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html). All cases were correctly classified in this preliminary study, indicating potential of using large-scale radiomics for MRI-based diagnosis of CVDs.
引用
收藏
页码:82 / 90
页数:9
相关论文
共 16 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] A bi-ventricular cardiac atlas built from 1000+high resolution MR images of healthy subjects and an analysis of shape and motion
    Bai, Wenjia
    Shi, Wenzhe
    de Marvao, Antonio
    Dawes, Timothy J. W.
    O'Regan, Declan P.
    Cook, Stuart A.
    Rueckert, Daniel
    [J]. MEDICAL IMAGE ANALYSIS, 2015, 26 (01) : 133 - 145
  • [3] Computer-aided diagnosis via model-based shape analysis: Automated classification of wall motion abnormalities in echocardiograms
    Bosch, JG
    Nijland, F
    Mitchell, SC
    Lelieveldt, BPF
    Kamp, O
    Reiber, JHC
    Sonka, M
    [J]. ACADEMIC RADIOLOGY, 2005, 12 (03) : 358 - 367
  • [4] Non-Small Cell Lung Cancer: Identifying Prognostic Imaging Biomarkers by Leveraging Public Gene Expression Microarray Data-Methods and Preliminary Results
    Gevaert, Olivier
    Xu, Jiajing
    Hoang, Chuong D.
    Leung, Ann N.
    Xu, Yue
    Quon, Andrew
    Rubin, Daniel L.
    Napel, Sandy
    Plevritis, Sylvia K.
    [J]. RADIOLOGY, 2012, 264 (02) : 387 - 396
  • [5] Guyon I., 2003, INTRO VARIABLE FEATU
  • [6] Lekadir K., 2016, P INT WORKSH STAT AT, V9534, P130, DOI [10.1007/978-3-319-28712-6_14, DOI 10.1007/978-3-319-28712-614]
  • [7] Statistical Personalization of Ventricular Fiber Orientation Using Shape Predictors
    Lekadir, Karim
    Hoogendoorn, Corne
    Pereanez, Marco
    Alba, Xenia
    Pashaei, Ali
    Frangi, Alejandro F.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (04) : 882 - 890
  • [8] Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
  • [9] A review of heart chamber segmentation for structural and functional analysis using cardiac magnetic resonance imaging
    Peng, Peng
    Lekadir, Karim
    Gooya, Ali
    Shao, Ling
    Petersen, Steffen E.
    Frangi, Alejandro F.
    [J]. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2016, 29 (02) : 155 - 195
  • [10] Cardiovascular Magnetic Resonance
    Pennell, Dudley J.
    [J]. CIRCULATION, 2010, 121 (05) : 692 - 705