Plasmonic light trapping in thin-film Si solar cells

被引:314
作者
Spinelli, P. [1 ]
Ferry, V. E. [2 ]
van de Groep, J. [1 ]
van Lare, M. [1 ]
Verschuuren, M. A. [3 ]
Schropp, R. E. I. [4 ]
Atwater, H. A. [2 ]
Polman, A. [1 ]
机构
[1] FOM Inst AMOLF, Ctr Nanophoton, NL-1098 XG Amsterdam, Netherlands
[2] CALTECH, Thomas J Watson Labs Appl Phys, Pasadena, CA 91125 USA
[3] Philips Res Labs, NL-5656 AE Eindhoven, Netherlands
[4] Univ Utrecht, Debye Inst Nanomat Sci, Sect Nanophoton, NL-3508 TA Utrecht, Netherlands
基金
欧洲研究理事会;
关键词
plasmonics; solar cells; light trapping; thin-film; ABSORPTION; ENHANCEMENT; SCATTERING; RESONANCE; ERBIUM; DIPOLE; TCO;
D O I
10.1088/2040-8978/14/2/024002
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Plasmonic nanostructures have been recently investigated as a possible way to improve absorption of light in solar cells. The strong interaction of small metal nanostructures with light allows control over the propagation of light at the nanoscale and thus the design of ultrathin solar cells in which light is trapped in the active layer and efficiently absorbed. In this paper we review some of our recent work in the field of plasmonics for improved solar cells. We have investigated two possible ways of integrating metal nanoparticles in a solar cell. First, a layer of Ag nanoparticles that improves the standard antireflection coating used for crystalline and amorphous silicon solar cells has been designed and fabricated. Second, regular and random arrays of metal nanostructures have been designed to couple light in waveguide modes of thin semiconductor layers. Using a large-scale, relative inexpensive nano-imprint technique, we have designed a back-contact light trapping surface for a-Si: H solar cells which show enhanced efficiency over standard randomly textured cells.
引用
收藏
页数:11
相关论文
共 46 条
[1]  
[Anonymous], THESIS FOM I AMOLF
[2]  
[Anonymous], NANO LETT IN PRESS
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[4]   Nanoimprint Lithography for High-Efficiency Thin-Film Silicon Solar Cells [J].
Battaglia, Corsin ;
Escarre, Jordi ;
Soederstroem, Karin ;
Erni, Lukas ;
Ding, Laura ;
Bugnon, Gregory ;
Billet, Adrian ;
Boccard, Mathieu ;
Barraud, Loris ;
De Wolf, Stefaan ;
Haug, Franz-Josef ;
Despeisse, Matthieu ;
Ballif, Christophe .
NANO LETTERS, 2011, 11 (02) :661-665
[5]   Tunable light trapping for solar cells using localized surface plasmons [J].
Beck, F. J. ;
Polman, A. ;
Catchpole, K. R. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
[6]   THE LIMITING EFFICIENCY OF SILICON SOLAR-CELLS UNDER CONCENTRATED SUNLIGHT [J].
CAMPBELL, P ;
GREEN, MA .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1986, 33 (02) :234-239
[7]   Design principles for particle plasmon enhanced solar cells [J].
Catchpole, K. R. ;
Polman, A. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[8]  
Catchpole KR, 2008, OPT EXPRESS, V16, P21793, DOI 10.1364/OE.16.021793
[9]   Amorphous silicon solar cells made with SnO2:F TCO films deposited by atmospheric pressure CVD [J].
Dagkaldiran, Ue ;
Gordijn, A. ;
Finger, F. ;
Yates, H. M. ;
Evans, P. ;
Sheel, D. W. ;
Remes, Z. ;
Vanecek, M. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 159-60 :6-9
[10]  
Deng Xunming., 2003, HDB PHOTOVOLTAIC SCI