Processing parameters to enhance the electrical conductivity and thermoelectric power factor of polypyrrole/multi-walled carbon nanotubes nanocomposites

被引:21
作者
Aghelinejad, Mohammadmehdi [1 ]
Zhang, Yichun [1 ]
Leung, Siu N. [1 ]
机构
[1] York Univ, Lassonde Sch Engn, Dept Mech Engn, Toronto, ON M3J 1P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Thermoelectric materials; Conducting polymers; Electrical conductivity; Carbon nanotubes; POLYMER COMPOSITES; PERFORMANCE; OPTIMIZATION; POLYANILINE; PROGRESS; FILMS; HEAT;
D O I
10.1016/j.synthmet.2018.11.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Charge transport properties of intrinsically conducting polymers (ICPs) is highly related to their microstructures. Processing conditions and material formulations can alter the morphology of ICPs and thereby their electrical and thermoelectric (TE) properties. In this paper, the effects of different processing and material parameters on the electrical conductivity and TE performance of polypyrrole (PPy)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were investigated. PPy/MWCNT nanocomposite samples were prepared by in-situ oxidative polymerization method. The effects of polymerization time, oxidant-to-monomer ratio, filler-to-monomer ratio, and reaction medium on electrical conductivity and Seebeck coefficient of the fabricated PPy/MWCNT nanocomposites were investigated to optimize the TE efficiency of PPy/MWCNT nanocomposites. The results revealed that, the MWCNT-to-monomer molar ratios of 0.1 and 1 provided the highest electrical conductivity and the maximum power factor, respectively. Addition of methanol to the reaction solution system led to finer structures in the nanocomposites and enhanced their electrical conductivity as well as their TE efficiencies.
引用
收藏
页码:59 / 66
页数:8
相关论文
共 46 条
[1]   Thermoelectric Nanocomposite Foams Using Non-Conducting Polymers with Hybrid 1D and 2D Nanofillers [J].
Aghelinejad, Mohammadmehdi ;
Leung, Siu Ning .
MATERIALS, 2018, 11 (09)
[2]   Fabrication of open-cell thermoelectric polymer nanocomposites by template-assisted multi-walled carbon nanotubes coating [J].
Aghelinejad, Mohammadmehdi ;
Leung, Siu N. .
COMPOSITES PART B-ENGINEERING, 2018, 145 :100-107
[3]   Enhancement of thermoelectric conversion efficiency of polymer/carbon nanotube nanocomposites through foaming-induced microstructuring [J].
Aghelinejad, Mohammadmehdi ;
Leung, Siu N. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2017, 134 (28)
[4]  
Ansari R., 2006, E-J CHEM, V3, P186, DOI [10.1155/2006/860413, DOI 10.1155/2006/860413]
[5]   Carbon-Nanotube-Based Thermoelectric Materials and Devices [J].
Blackburn, Jeffrey L. ;
Ferguson, Andrew J. ;
Cho, Chungyeon ;
Grunlan, Jaime C. .
ADVANCED MATERIALS, 2018, 30 (11)
[6]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/nmat3012, 10.1038/NMAT3012]
[7]   Molecular dynamic simulation of the hydration and diffusion of chloride ions from bulk water to polypyrrole matrix [J].
Cascales, JJL ;
Otero, TF .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (04) :1951-1957
[8]   Recent advances in organic polymer thermoelectric composites [J].
Chen, Guangming ;
Xu, Wei ;
Zhu, Daoben .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (18) :4350-4360
[9]   Review on Polymers for Thermoelectric Applications [J].
Culebras, Mario ;
Gomez, Clara M. ;
Cantarero, Andres .
MATERIALS, 2014, 7 (09) :6701-6732
[10]   Controlled growth of polypyrrole nanotubule/wire in the presence of a cationic surfactant [J].
Dai, Tingyang ;
Yang, Xiaoming ;
Lu, Yun .
NANOTECHNOLOGY, 2006, 17 (12) :3028-3034