Parallel optimization by means of a Spectral-Projected-Gradient approach

被引:0
|
作者
Ignacio Ardenghi, Juan [2 ]
Esteban Vazquez, Gustavo [2 ,3 ]
Beatriz Brignole, Nelida [1 ,2 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Planta Piloto Ingn Quim PLAPIQUI Complejo CCT UAT, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[2] Univ Nacl Sur, DCIC, LIDeCC, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[3] Univ Catolica Uruguay, Fac Ingn & Tecnol, Montevideo 11600, Uruguay
关键词
Optimization; Parallel programming; Non-linear problems; Efficiency; BARZILAI-BORWEIN METHOD; DESIGN; MINIMIZATION;
D O I
10.1016/j.compchemeng.2015.04.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The judicious exploitation of the inherent optimization capabilities of the Spectral-Projected-Gradient method (SPG) is proposed. SPG was implemented in order to achieve efficiency. The novel adjustments of the standard SPG algorithm showed that the parallel approach proves to be useful for optimization problems related to process systems engineering. Efficiency was achieved without having to relax the problems because the original model solutions were obtained in reasonable time. (c) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:344 / 354
页数:11
相关论文
共 50 条
  • [41] Two sufficient descent spectral conjugate gradient algorithms for unconstrained optimization with application
    Ibrahim, Sulaiman Mohammed
    Salihu, Nasiru
    OPTIMIZATION AND ENGINEERING, 2025, 26 (01) : 655 - 679
  • [42] A swarm optimization approach for solving workspace determination of parallel manipulators
    Saputra, V. B.
    Ong, S. K.
    Nee, A. Y. C.
    ROBOTICA, 2015, 33 (03) : 649 - 668
  • [43] Optimization of unconstrained problems using a developed algorithm of spectral conjugate gradient method calculation
    Mrad, Hatem
    Fakhari, Seyyed Mojtaba
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 215 : 282 - 290
  • [44] Spectral-like conjugate gradient methods with sufficient descent property for vector optimization
    Yahaya, Jamilu
    Kumam, Poom
    Salisu, Sani
    Sitthithakerngkiet, Kanokwan
    PLOS ONE, 2024, 19 (05):
  • [45] Energy Efficiency Maximization in Large-Scale Cell-Free Massive MIMO: A Projected Gradient Approach
    Mai, Trang C.
    Ngo, Hien Quoc
    Tran, Le-Nam
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (08) : 6357 - 6371
  • [46] A New Variational Approach Based on Proximal Deep Injection and Gradient Intensity Similarity for Spatio-Spectral Image Fusion
    Wu, Zhong-Cheng
    Huang, Ting-Zhu
    Deng, Liang-Jian
    Vivone, Gemine
    Miao, Jia-Qing
    Hu, Jin-Fan
    Zhao, Xi-Le
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 6277 - 6290
  • [47] SPGD: Search Party Gradient Descent Algorithm, a Simple Gradient-Based Parallel Algorithm for Bound-Constrained Optimization
    Syed Shahul Hameed, A. S.
    Rajagopalan, Narendran
    MATHEMATICS, 2022, 10 (05)
  • [48] A stochastic subspace approach to gradient-free optimization in high dimensions
    Kozak, David
    Becker, Stephen
    Doostan, Alireza
    Tenorio, Luis
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 79 (02) : 339 - 368
  • [49] Existence results on Lagrange multiplier approach for gradient flows and application to optimization
    Onuma, Kenya
    Sato, Shun
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2024, 41 (01) : 165 - 189
  • [50] A geometric integration approach to smooth optimization: foundations of the discrete gradient method
    Ehrhardt, Matthias J.
    Riis, Erlend S.
    Ringholm, Torbjorn
    Schonlieb, Carola-Bibiane
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,