Prognostic value of a 92-probe signature in breast cancer

被引:12
作者
Akter, Salima [1 ]
Choi, Tae Gyu [1 ]
Nguyen, Minh Nam [1 ]
Matondo, Abel [1 ]
Kim, Jin-Hwan [1 ]
Jo, Yong Hwa [1 ]
Jo, Ara [1 ]
Shahid, Muhammad [1 ]
Jun, Dae Young [1 ]
Yoo, Ji Youn [1 ]
Nguyen, Ngoc Ngo Yen [1 ]
Seo, Seong-Wook [1 ]
Ali, Liaquat [2 ]
Lee, Ju-Seog [3 ]
Yoon, Kyung-Sik [1 ]
Choe, Wonchae [1 ]
Kang, Insug [1 ]
Ha, Joohun [1 ]
Kim, Jayoung [4 ]
Kim, Sung Soo [1 ]
机构
[1] Kyung Hee Univ, Dept Biochem & Mol Biol, Sch Med, Seoul, South Korea
[2] Bangladesh Univ Hlth Sci, Dept Biochem & Cell Biol, Dhaka, Bangladesh
[3] Univ Texas MD Anderson Canc Ctr, Dept Syst Biol, Houston, TX 77030 USA
[4] Cedars Sinai Med Ctr, Dept Surg & Biomed Sci, Samuel Oschin Comprehens Canc Inst, Los Angeles, CA 90048 USA
基金
新加坡国家研究基金会;
关键词
microarray; gene signature; breast cancer; prognosis; MICROARRAY DATA; GENE SIGNATURE; METASTASIS; BIOMARKER; DARPP-32; THERAPY; ASSAY;
D O I
10.18632/oncotarget.3525
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Clinical applications of gene expression signatures in breast cancer prognosis still remain limited due to poor predictive strength of single training datasets and appropriate invariable platforms. We proposed a gene expression signature by reducing baseline differences and analyzing common probes among three recent Affymetrix U133 plus 2 microarray data sets. Using a newly developed supervised method, a 92-probe signature found in this study was associated with overall survival. It was robustly validated in four independent data sets and then repeated on three subgroups by incorporating 17 breast cancer microarray datasets. The signature was an independent predictor of patients' survival in univariate analysis [(HR) 1.927, 95% CI (1.237-3.002); p < 0.01] as well as multivariate analysis after adjustment of clinical variables [(HR) 7.125, 95% CI (2.462-20.618); p < 0.001]. Consistent predictive performance was found in different multivariate models in increased patient population (p = 0.002). The survival signature predicted a late metastatic feature through 5-year disease free survival (p = 0.006). We identified subtypes within the lymph node positive (p < 0.001) and ER positive (p = 0.01) patients that best reflected the invasive breast cancer biology. In conclusion using the Common Probe Approach, we present a novel prognostic signature as a predictor in breast cancer late recurrences.
引用
收藏
页码:15662 / 15680
页数:19
相关论文
共 37 条
[1]   Microtubule-associated protein-tau is a bifunctional predictor of endocrine sensitivity and chemotherapy resistance in estrogen receptor-positive breast cancer [J].
Andre, Fabrice ;
Hatzis, Christos ;
Anderson, Keith ;
Sotiriou, Christos ;
Mazouni, Chafika ;
Mejia, Jaime ;
Wang, Bailang ;
Hortobagyi, Gabriel N. ;
Symmans, W. Fraser ;
Pusztai, Lajos .
CLINICAL CANCER RESEARCH, 2007, 13 (07) :2061-2067
[2]   Semi-supervised methods to predict patient survival from gene expression data [J].
Bair, E ;
Tibshirani, R .
PLOS BIOLOGY, 2004, 2 (04) :511-522
[3]   Maximizing biomarker discovery by minimizing gene signatures [J].
Chang, Chang ;
Wang, Junwei ;
Zhao, Chen ;
Fostel, Jennifer ;
Tong, Weida ;
Bushel, Pierre R. ;
Deng, Youping ;
Pusztai, Lajos ;
Symmans, W. Fraser ;
Shi, Tieliu .
BMC GENOMICS, 2011, 12
[4]   Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using logistic regression, artificial neural networks and decision trees [J].
Chou, Hsiu-Ling ;
Yao, Chung-Tay ;
Su, Sui-Lun ;
Lee, Chia-Yi ;
Hu, Kuang-Yu ;
Terng, Harn-Jing ;
Shih, Yun-Wen ;
Chang, Yu-Tien ;
Lu, Yu-Fen ;
Chang, Chi-Wen ;
Wahlqvist, Mark L. ;
Wetter, Thomas ;
Chu, Chi-Ming .
BMC BIOINFORMATICS, 2013, 14
[5]   The type III TGF-β receptor suppresses breast cancer progression [J].
Dong, Mei ;
How, Tam ;
Kirkbride, Kellye C. ;
Gordon, Kelly J. ;
Lee, Jason D. ;
Hempel, Nadine ;
Kelly, Patrick ;
Moeller, Benjamin J. ;
Marks, Jeffrey R. ;
Blobe, Gerard C. .
JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (01) :206-217
[6]   Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer [J].
Ein-Dor, L ;
Zuk, O ;
Domany, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (15) :5923-5928
[7]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[8]   RERG is a novel ras-related, estrogen-regulated and growth-inhibitory gene in breast cancer [J].
Finlin, BS ;
Gau, CL ;
Murphy, GA ;
Shao, HP ;
Kimel, T ;
Seitz, RS ;
Chiu, YF ;
Botstein, D ;
Brown, PO ;
Tamanoi, F ;
Andres, DA ;
Perou, CM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (45) :42259-42267
[9]   An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients [J].
Gyoerffy, Balazs ;
Lanczky, Andras ;
Eklund, Aron C. ;
Denkert, Carsten ;
Budczies, Jan ;
Li, Qiyuan ;
Szallasi, Zoltan .
BREAST CANCER RESEARCH AND TREATMENT, 2010, 123 (03) :725-731
[10]   Phosphorylation of DARPP-32 regulates breast cancer cell migration downstream of the receptor tyrosine kinase DDR1 [J].
Hansen, Christian ;
Greengard, Paul ;
Nairn, Angus C. ;
Andersson, Tommy ;
Vogel, Wolfgang F. .
EXPERIMENTAL CELL RESEARCH, 2006, 312 (20) :4011-4018