Contribution of titanium substitution on improving the electrochemical properties of P2-Na0.67Ni0.33Mn0.67O2 cathode material for sodium-ion storage

被引:9
|
作者
Cao, Zhijie [1 ]
Li, Lijiang [1 ]
Zhou, Chaojin [2 ]
Ma, Xiaobo [1 ]
Wang, Hailong [1 ]
机构
[1] Ningxia Univ, Sch Phys & Elect Elect Engn, Adv Energy Storage Mat & Devices Lab, Yinchuan 750021, Ningxia, Peoples R China
[2] South China Univ Technol, Guangdong Prov Key Lab Adv Energy Storage Mat, Sch Mat Sci & Engn, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; cathode material; Na0.67Ni0.33Mn0.67O2; Ti-substitution; P2-TYPE NA2/3NI1/3MN2/3O2; HIGH-CAPACITY; PERFORMANCE; BATTERIES; TRANSITION; ELECTRODE; OXIDE;
D O I
10.1142/S1793604720510108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
P2-type Na0.67Ni0.33Mn0.67-xTixO2(0 <= x <= 0.4) have been synthesized as cathode materials for sodium-ion batteries, and the effect of Ti substitution on the structural evolution and electrochemical properties of Na0.67Ni0.33Mn0.67O2 are investigated in detail. Analysis results indicate that an appropriate substituted amount of Mn with Ti in the MO2 layers effectively stabilize the crystal lattice of these layered electrodes during the Na+ insertion/extraction process, which significantly improves their electrochemical performances between 2.5 and 4.4V. The discharge/charge patterns and in situ X-ray diffraction measurements expound the successful suppression of Na+/vacancy ordering and multiphase transition during the de-sodiation/sodiation process to resist the structure-induced degradation, which provide possible guidelines for exploring high performances sodium-ion batteries.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Role of Lithium Doping in P2-Na0.67Ni0.33Mn0.67O2 for Sodium-Ion Batteries
    Xie, Yingying
    Gabriel, Eric
    Fan, Longlong
    Hwang, Inhui
    Li, Xiang
    Zhu, Haoyu
    Ren, Yang
    Sun, Chengjun
    Pipkin, Julie
    Dustin, Malia
    Li, Matthew
    Chen, Zonghai
    Lee, Eungje
    Xiong, Hui
    CHEMISTRY OF MATERIALS, 2021, 33 (12) : 4445 - 4455
  • [2] Insights of the anionic redox in P2-Na0.67Ni0.33Mn0.67O2
    Zuo, Wenhua
    Ren, Fucheng
    Li, Qinghao
    Wu, Xuehang
    Fang, Fei
    Yu, Xiqian
    Li, Hong
    Yang, Yong
    NANO ENERGY, 2020, 78
  • [3] Enhancement of electrochemical performance of sodium-ion battery cathode material Na0.67Ni0.33Mn0.67O2 by Zn/Al co-substitution
    Yang, Tingfei
    Chen, Na
    Li, Anqi
    Feng, Anrui
    Li, Yihan
    Qin, Yaru
    Qin, Xue
    Shi, Chenglong
    INORGANIC CHEMISTRY COMMUNICATIONS, 2025, 173
  • [4] Thermal dynamics of P2-Na0.67Ni0.33Mn0.67O2 cathode materials for sodium ion batteries studied by in situ analysis
    Dewen Hou
    Eric Gabriel
    Kincaid Graff
    Tianyi Li
    Yang Ren
    Zihongbo Wang
    Yuzi Liu
    Hui Xiong
    Journal of Materials Research, 2022, 37 : 1156 - 1163
  • [5] Thermal dynamics of P2-Na0.67Ni0.33Mn0.67O2 cathode materials for sodium ion batteries studied by in situ analysis
    Hou, Dewen
    Gabriel, Eric
    Graff, Kincaid
    Li, Tianyi
    Ren, Yang
    Wang, Zihongbo
    Liu, Yuzi
    Xiong, Hui
    JOURNAL OF MATERIALS RESEARCH, 2022, 37 (06) : 1156 - 1163
  • [6] Effect of Sodium Phosphate Coating on Cu and Mg-Substituted P2-Na0.67Ni0.33Mn0.67O2 for Improving the Cycling Performance of Sodium-Ion Capacitors
    Lee, Song Yeul
    Kim, Yang Soo
    Park, Sangho
    Lee, Yun-Sung
    Park, Yong Il
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (47) : 54530 - 54538
  • [7] Manipulating Na occupation and constructing protective film of P2-Na0.67Ni0.33Mn0.67O2 as long-term cycle stability cathode for sodium-ion batteries
    Yiran Sun
    Pengfei Zhou
    Siyu Liu
    Zhongjun Zhao
    Yihao Pan
    Xiangyan Shen
    Xiaozhong Wu
    Jinping Zhao
    Junying Weng
    Jin Zhou
    Journal of Energy Chemistry , 2024, (01) : 603 - 611
  • [8] Manipulating Na occupation and constructing protective film of P2-Na0.67Ni0.33Mn0.67O2 as long-term cycle stability cathode for sodium-ion batteries
    Sun, Yiran
    Zhou, Pengfei
    Liu, Siyu
    Zhao, Zhongjun
    Pan, Yihao
    Shen, Xiangyan
    Wu, Xiaozhong
    Zhao, Jinping
    Weng, Junying
    Zhou, Jin
    JOURNAL OF ENERGY CHEMISTRY, 2024, 88 : 603 - 611
  • [9] Electrochemical Electrochemical study of Na0.66Ni0.33Mn0.67-xMoxO2 as cathode material for sodium-ion battery
    Sun, Jiale
    Shen, Jianxing
    Wang, Tailin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 709 : 481 - 486
  • [10] Single-Crystal P2-Na0.67Mn0.67Ni0.33O2 Cathode Material with Improved Cycling Stability for Sodium-Ion Batteries
    Pamidi, Venkat
    Naranjo, Carlos
    Fuchs, Stefan
    Stein, Helge
    Diemant, Thomas
    Li, Yueliang
    Biskupek, Johannes
    Kaiser, Ute
    Dinda, Sirshendu
    Reupert, Adam
    Behara, Santosh
    Hu, Yang
    Trivedi, Shivam
    Munnangi, Anji Reddy
    Barpanda, Prabeer
    Fichtner, Maximilian
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (20) : 25953 - 25965