The Fate of Bacterial Cocaine Esterase (CocE): An In Vivo Study of CocE-Mediated Cocaine Hydrolysis, CocE Pharmacokinetics, and CocE Elimination

被引:6
作者
Brim, Remy L. [1 ]
Noon, Kathleen R. [2 ]
Collins, Gregory T. [3 ]
Stein, Aron [4 ]
Nichols, Joseph [1 ]
Narasimhan, Diwa
Ko, Mei-Chuan [1 ]
Woods, James H. [1 ]
Sunahara, Roger K. [1 ]
机构
[1] Univ Michigan, Dept Pharmacol, Ann Arbor, MI 48109 USA
[2] Med Coll Wisconsin, Innovat Ctr, Milwaukee, WI 53226 USA
[3] Harvard Univ, McLean Hosp, Sch Med, Alcohol & Drug Abuse Res Ctr, Belmont, MA USA
[4] Stein Consulting, San Diego, CA USA
基金
美国国家卫生研究院;
关键词
PROTECTION;
D O I
10.1124/jpet.111.186049
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Cocaine abuse and toxicity remain widespread problems in the United States. Currently cocaine toxicity is treated only symptomatically, because there is no Food and Drug Administration-approved pharmacotherapy for this indication. To address the unmet need, a stabilized mutant of bacterial cocaine esterase [T172R/G173Q-CocE (DM-CocE)], which hydrolyzes cocaine into inactive metabolites and has low immunogenic potential, has been developed and previously tested in animal models of cocaine toxicity. Here, we document the rapid cocaine hydrolysis by low doses of DM-CocE in vitro and in vivo, as well as the pharmacokinetics and distribution of the DM-CocE protein in rats. DM-CocE at 50.5 mu g/kg effectively eliminated 4 mg/kg cocaine within 2 min in both male and female rats as measured by mass spectrometry. We expanded on these findings by using a pharmacologically relevant dose of DM-CocE (0.32 mg/kg) in rats and monkeys to hydrolyze convulsant doses of cocaine. DM-CocE reduced cocaine to below detection limits rapidly after injection; however, elimination of DM-CocE resulted in peripheral cocaine redistribution by 30 to 60 min. Elimination of DM-CocE was quantified by using [S-35] labeling of the enzyme and was found to have a half-life of 2.1 h in rats. Minor urinary output of DM-CocE was also observed. Immunohistochemistry, Western blotting, and radiography all were used to elucidate the mechanism of DM-CocE elimination, rapid proteolysis, and recycling of amino acids into all tissues. This rapid elimination of DM-CocE is a desirable property of a therapeutic for cocaine toxicity and should reduce the likelihood of immunogenic or adverse reactions as DM-CocE moves toward clinical use.
引用
收藏
页码:83 / 95
页数:13
相关论文
共 36 条
[1]  
[Anonymous], DHHS PUBL
[2]  
[Anonymous], **NON-TRADITIONAL**
[3]  
[Anonymous], 2011, RES 2010 NAT SURV DR
[4]   Gene cloning and nucleotide sequencing and properties of a cocaine esterase from Rhodococcus sp strain MB1 [J].
Bresler, MM ;
Rosser, SJ ;
Basran, A ;
Bruce, NC .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (03) :904-908
[5]   A Thermally Stable Form of Bacterial Cocaine Esterase: A Potential Therapeutic Agent for Treatment of Cocaine Abuse [J].
Brim, Remy L. ;
Nance, Mark R. ;
Youngstrom, Daniel W. ;
Narasimhan, Diwahar ;
Zhan, Chang-Guo ;
Tesmer, John J. G. ;
Sunahara, Roger K. ;
Woods, James H. .
MOLECULAR PHARMACOLOGY, 2010, 77 (04) :593-600
[6]  
BRIM RL, 2011, MOL PHARM
[7]   Amino acid transport across mammalian intestinal and renal epithelia [J].
Broer, Stefan .
PHYSIOLOGICAL REVIEWS, 2008, 88 (01) :249-286
[8]   Discovering the neural basis of human social anxiety: A diagnostic and therapeutic imperative [J].
Charney, DS .
AMERICAN JOURNAL OF PSYCHIATRY, 2004, 161 (01) :1-2
[9]   Effects of a long-acting mutant bacterial cocaine esterase on acute cocaine toxicity in rats [J].
Collins, Gregory T. ;
Zaks, Matthew E. ;
Cunningham, Alyssa R. ;
Clair, Carley St. ;
Nichols, Joseph ;
Narasimhan, Diwahar ;
Ko, Mei-Chuan ;
Sunahara, Roger K. ;
Woods, James H. .
DRUG AND ALCOHOL DEPENDENCE, 2011, 118 (2-3) :158-165
[10]   Amelioration of the Cardiovascular Effects of Cocaine in Rhesus Monkeys by a Long-Acting Mutant Form of Cocaine Esterase [J].
Collins, Gregory T. ;
Carey, Kathy A. ;
Narasimhan, Diwahar ;
Nichols, Joseph ;
Berlin, Aaron A. ;
Lukacs, Nicholas W. ;
Sunahara, Roger K. ;
Woods, James H. ;
Ko, Mei-Chuan .
NEUROPSYCHOPHARMACOLOGY, 2011, 36 (05) :1047-1059