Friction velocity estimation using a 2D sonic anemometer in coastal zones

被引:0
作者
Figueroa-Espinoza, Bernardo [1 ,3 ]
Sanchez-Mejia, Zulia [2 ,3 ]
Maximiliano Uuh-Sonda, Jorge [1 ,3 ]
Salles, Paulo [1 ,3 ]
Mendez-Barroso, Luis [2 ,3 ]
Alberto Gutierrez-Jurado, Hugo [4 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ingn, Lab Ingn & Proc Costeros, Puerto Abrigo S-N, Sisal 97355, Yucatan, Mexico
[2] Inst Tecnol Sonora, Dept Ciencias Agua & Medioambiente, 5 Febrero 818 Sur, Obregon 85000, Sonora, Mexico
[3] UNAM CONACYT, Lab Nacl Resiliencia Costera LANRESC, Www Lanresc Mx, Madrid, Spain
[4] Univ Texas El Paso, Dept Earth Environm & Resource Sci, 500 W Univ Ave,Geol Sci Bldg,Room 227-A, El Paso, TX 79968 USA
来源
ATMOSFERA | 2022年 / 35卷 / 04期
关键词
friction velocity; Eddy Covariance; Monin-Obukhov Similarity Theory; Sonic Anemometry; 2D anemometer; Coastal Zone; INERTIAL DISSIPATION METHOD; SHEAR-STRESS; YUCATAN PENINSULA; ROUGHNESS LENGTH; SURFACE; SIMILARITY; COEFFICIENTS; VARIANCE; CARBON; LAYER;
D O I
10.20937/ATM.52960
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Friction velocity (u*) is an important velocity scale used in the study of engineering and geophysical flows. The widespread use of 2D sonic anemometers in modern meteorological stations makes the estimation of u* from just the horizontal components of the velocity a very attractive possibility. The presence of different wind regimes (such as sea breezes in or near coastal zones) causes the turbulent parameters to be dependent on the wind direction. Additionally, u* depends on atmospheric stability, whch makes the estimation of u* from 2D measurements very difficult. A simple expression is proposed, and then tested with data from six independent experiments located in coastal zones. The results show that it is possible to estimate friction velocity from 2D measurements using the turbulence intensity as a proxy for u*, reducing substantially the sensitivity to the wind direction or atmospheric stability, with small root mean squared errors (0.06 < RMSE < 0.097) and high correlation coefficients (0.77 < r2 < 0.95).
引用
收藏
页码:673 / 685
页数:13
相关论文
共 50 条
  • [31] An embedded upward flame spread model using 2D direct numerical simulations
    Xie, Wei
    DesJardin, Paul E.
    COMBUSTION AND FLAME, 2009, 156 (02) : 522 - 530
  • [32] Using a 2D Profilometer to Determine Volume and Thickness of Stockpiles and Ground Layers of Roads
    Niskanen, Ilpo
    Immonen, Matti
    Hallman, Lauri
    Mikkonen, Martti
    Hokkanen, Visa
    Hashimoto, Takeshi
    Kostamovaara, Juha
    Heikkilae, Rauno
    JOURNAL OF TRANSPORTATION ENGINEERING PART B-PAVEMENTS, 2023, 149 (01)
  • [33] Integrated 2D photonic crystal stack filter fabricated using nanoreplica molding
    Yang, Fuchyi
    Yen, Gary
    Cunningham, Brian T.
    OPTICS EXPRESS, 2010, 18 (11): : 11846 - 11858
  • [34] Generating 3D models from a single 2D digitized photo using GIS and GroIMP
    Chi, Faustno
    Kurth, Winfried
    Streit, KatarIna
    2016 IEEE INTERNATIONAL CONFERENCE ON FUNCTIONAL-STRUCTURAL PLANT GROWTH MODELING, SIMULATION, VISUALIZATION AND APPLICATIONS (FSPMA), 2016, : 22 - 27
  • [35] Efficiency and Stability Analysis of 2D/3D Perovskite Solar Cells Using Machine Learning
    Yilmaz, Beyza
    Odabasi, Cagla
    Yildirim, Ramazan
    ENERGY TECHNOLOGY, 2022, 10 (03)
  • [36] Comparing and visualizing titanium implant integration in rat bone using 2D and 3D techniques
    Arvidsson, Anna
    Sarve, Hamid
    Johansson, Carina B.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2015, 103 (01) : 12 - 20
  • [37] Quantitative Determination of Pt- Catalyzed D-Glucose Oxidation Products Using 2D NMR
    Armstrong, R. D.
    Hirayama, J.
    Knight, D. W.
    Hutchings, G. J.
    ACS CATALYSIS, 2019, 9 (01) : 325 - 335
  • [38] Stacking ensemble learning models for daily runoff prediction using 1D and 2D CNNs
    Xie, Yutong
    Sun, Wei
    Ren, Miaomiao
    Chen, Shu
    Huang, Zexi
    Pan, Xingyou
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 217
  • [39] The Clique Potential of Markov Random Field in a Random Experiment for Estimation of Noise Levels in 2D Brain MRI
    Osadebey, Michael
    Bouguila, Nizar
    Arnold, Douglas
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2013, 23 (04) : 304 - 313
  • [40] Investigation of the Wind Resource Assessment over 2D Continuous Rolling Hills Due to Tropical Cyclones in the Coastal Region of Southeastern China
    Zhang, Mingming
    Liu, Mengting
    ENERGIES, 2014, 7 (02): : 913 - 933