Friction velocity estimation using a 2D sonic anemometer in coastal zones

被引:0
|
作者
Figueroa-Espinoza, Bernardo [1 ,3 ]
Sanchez-Mejia, Zulia [2 ,3 ]
Maximiliano Uuh-Sonda, Jorge [1 ,3 ]
Salles, Paulo [1 ,3 ]
Mendez-Barroso, Luis [2 ,3 ]
Alberto Gutierrez-Jurado, Hugo [4 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ingn, Lab Ingn & Proc Costeros, Puerto Abrigo S-N, Sisal 97355, Yucatan, Mexico
[2] Inst Tecnol Sonora, Dept Ciencias Agua & Medioambiente, 5 Febrero 818 Sur, Obregon 85000, Sonora, Mexico
[3] UNAM CONACYT, Lab Nacl Resiliencia Costera LANRESC, Www Lanresc Mx, Madrid, Spain
[4] Univ Texas El Paso, Dept Earth Environm & Resource Sci, 500 W Univ Ave,Geol Sci Bldg,Room 227-A, El Paso, TX 79968 USA
来源
ATMOSFERA | 2022年 / 35卷 / 04期
关键词
friction velocity; Eddy Covariance; Monin-Obukhov Similarity Theory; Sonic Anemometry; 2D anemometer; Coastal Zone; INERTIAL DISSIPATION METHOD; SHEAR-STRESS; YUCATAN PENINSULA; ROUGHNESS LENGTH; SURFACE; SIMILARITY; COEFFICIENTS; VARIANCE; CARBON; LAYER;
D O I
10.20937/ATM.52960
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Friction velocity (u*) is an important velocity scale used in the study of engineering and geophysical flows. The widespread use of 2D sonic anemometers in modern meteorological stations makes the estimation of u* from just the horizontal components of the velocity a very attractive possibility. The presence of different wind regimes (such as sea breezes in or near coastal zones) causes the turbulent parameters to be dependent on the wind direction. Additionally, u* depends on atmospheric stability, whch makes the estimation of u* from 2D measurements very difficult. A simple expression is proposed, and then tested with data from six independent experiments located in coastal zones. The results show that it is possible to estimate friction velocity from 2D measurements using the turbulence intensity as a proxy for u*, reducing substantially the sensitivity to the wind direction or atmospheric stability, with small root mean squared errors (0.06 < RMSE < 0.097) and high correlation coefficients (0.77 < r2 < 0.95).
引用
收藏
页码:673 / 685
页数:13
相关论文
共 50 条
  • [21] Electrochemical determination of vanillin using 2D/2D heterostructure based on ZnCr-layered double hydroxide and g-CN
    Gopi, Santhosam
    Wang, Sea-Fue
    MICROCHIMICA ACTA, 2023, 190 (10)
  • [22] 3D reconstruction quality assessment using 2D reprojection with dynamic partitioning
    Chamorro-Rivera, Camilo
    Salazar-Jimenez, Augusto
    IMAGING SCIENCE JOURNAL, 2024, 72 (08) : 1093 - 1107
  • [23] 3DTNet: Learning Local Features using 2D and 3D Cues
    Xing, Xiaoxia
    Cai, Yinghao
    Lu, Tao
    Cai, Shaojun
    Yang, Yiping
    Wen, Dayong
    2018 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2018, : 435 - 443
  • [24] Characterization of interlayer forces in 2D heterostructures using neutral atom scattering
    Al Taleb, Amjad
    Anemone, Gloria
    Miranda, Rodolfo
    Farias, Daniel
    2D MATERIALS, 2018, 5 (04):
  • [25] Mitigating iron-induced catalytic wear in monocrystalline diamond tools using two-dimensional (2D) materials
    Kiat, Shah
    Samuel, Johnson
    JOURNAL OF MANUFACTURING PROCESSES, 2021, 68 : 95 - 103
  • [26] Tailoring the Vertical and Planar Growth of 2D WS2 Thin Films Using Pulsed Laser Deposition for Enhanced Gas Sensing Properties
    Bisht, Prashant
    Kumar, Arvind
    Ghosh, Abhishek
    Vullum, Per Erik
    Sunding, Martin Fleissner
    Belle, Branson D.
    Mehta, Bodh Raj
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (32) : 36789 - 36800
  • [27] The prediction of crystal densities of a big data set using 1D and 2D structure features
    Li, Xianlan
    Kong, Dingling
    Luan, Yue
    Guo, Lili
    Lu, Yanhua
    Li, Wei
    Tang, Meng
    Zhang, Qingyou
    Pang, Aimin
    STRUCTURAL CHEMISTRY, 2024, 35 (05) : 1375 - 1385
  • [28] 2D joint inversion of geophysical data using petrophysical clustering and facies deformation
    Zhang, J.
    Revil, A.
    GEOPHYSICS, 2015, 80 (05) : M69 - M88
  • [29] Generating 3D models from a single 2D digitized photo using GIS and GroIMP
    Chi, Faustno
    Kurth, Winfried
    Streit, KatarIna
    2016 IEEE INTERNATIONAL CONFERENCE ON FUNCTIONAL-STRUCTURAL PLANT GROWTH MODELING, SIMULATION, VISUALIZATION AND APPLICATIONS (FSPMA), 2016, : 22 - 27
  • [30] Efficiency and Stability Analysis of 2D/3D Perovskite Solar Cells Using Machine Learning
    Yilmaz, Beyza
    Odabasi, Cagla
    Yildirim, Ramazan
    ENERGY TECHNOLOGY, 2022, 10 (03)