High-performance ion removal via zinc-air desalination

被引:38
作者
Srimuk, Pattarachai [1 ]
Wang, Lei [1 ,2 ]
Budak, Oznil [1 ,2 ]
Presser, Volker [1 ,2 ]
机构
[1] INM Leibniz Inst New Mat, D-66123 Saarbrucken, Germany
[2] Saarland Univ, Dept Mat Sci & Engn, D-66123 Saarbrucken, Germany
关键词
Water desalination; Capacitive deionization; Zinc-air battery; Oxygen reduction reaction; Oxygen evolution reaction; INTERCALATION; SEAWATER; WATER; DEIONIZATION; BRACKISH; BATTERY; MXENE;
D O I
10.1016/j.elecom.2020.106713
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrochemical processes enable a new generation of energy-efficient desalination technologies. While ion electrosorption via capacitive deionization is only suitable for brackish water with low molar strength, the use of Faradaic materials capable of reversible ion intercalation or conversion reactions allows energy-efficient removal of ions from seawater. However, the limited charge transfer/storage capacity of Faradaic materials indicates an upper limit for their desalination applications. Therefore, a new electrochemical concept must be explored to exceed the current state-of-the-art results and to push the desalination capacity beyond 100-200 mg(NaCl)/g(electrode). In this proof-of-concept work, we introduce the new concept of using metal-air battery technology for desalination. We do so by presenting performance data for zinc-air desalination (ZAD) in 600 mM NaCl. The ZAD cell provides a desalination capacity of 0.9-1.0 mg(NaCl)/cm(2) (normalized to the membrane area; corresponding to 1300 mg(NaCl)/g(Zn)) with a charge efficiency of 70% when charging/discharging the cell at 1 mA/cm(2). The energy consumption of ZAD is 68-92 kJ/mol.
引用
收藏
页数:6
相关论文
共 23 条
[1]   High performance electrochemical saline water desalination using silver and silver-chloride electrodes [J].
Ahn, Jaewuk ;
Lee, Jiho ;
Kim, Seoni ;
Kim, Choonsoo ;
Lee, Jaehan ;
Biesheuvel, P. M. ;
Yoon, Jeyong .
DESALINATION, 2020, 476
[2]   Porous Cryo-Dried MXene for Efficient Capacitive Deionization [J].
Bao, Weizhai ;
Tang, Xiao ;
Guo, Xin ;
Choi, Sinho ;
Wang, Chengyin ;
Gogotsi, Yury ;
Wang, Guoxiu .
JOULE, 2018, 2 (04) :778-787
[3]   Permselective ion electrosorption of subnanometer pores at high molar strength enables capacitive deionization of saline water [J].
Bi, Sheng ;
Zhang, Yuan ;
Cervini, Luca ;
Mo, Tangming ;
Griffin, John M. ;
Presser, Volker ;
Feng, Guang .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (03) :1285-1295
[4]   Dual-ions electrochemical deionization: a desalination generator [J].
Chen, Fuming ;
Huang, Yinxi ;
Guo, Lu ;
Sun, Linfeng ;
Wang, Ye ;
Yang, Hui Ying .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (10) :2081-2089
[5]   Bifunctional electrocatalysts for Zn-air batteries [J].
Davari, E. ;
Ivey, D. G. .
SUSTAINABLE ENERGY & FUELS, 2018, 2 (01) :39-67
[6]   Desalination via chemical energy: An electrodialysis cell driven by spontaneous electrode reactions [J].
Khalla, S. Abu ;
Suss, M. E. .
DESALINATION, 2019, 467 :257-262
[7]   Short Review of Multichannel Membrane Capacitive Deionization: Principle, Current Status, and Future Prospect [J].
Kim, Nayeong ;
Lee, Jiho ;
Kim, Seonghwan ;
Hong, Sung Pil ;
Lee, Changha ;
Yoon, Jeyong ;
Kim, Choonsoo .
APPLIED SCIENCES-BASEL, 2020, 10 (02)
[8]   Rocking Chair Desalination Battery Based on Prussian Blue Electrodes [J].
Lee, Jaehan ;
Kim, Seonghwan ;
Yoon, Jeyong .
ACS OMEGA, 2017, 2 (04) :1653-1659
[9]   High Electrochemical Seawater Desalination Performance Enabled by an Iodide Redox Electrolyte Paired with a Sodium Superionic Conductor [J].
Lee, Juhan ;
Srimuk, Pattarachai ;
Zornitta, Rafael L. ;
Aslan, Mesut ;
Mehdi, B. Layla ;
Presser, Volker .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (11) :10132-10142
[10]   Pseudocapacitive Desalination of Brackish Water and Seawater with Vanadium-Pentoxide-Decorated Multiwalled Carbon Nanotubes [J].
Lee, Juhan ;
Srimuk, Pattarachai ;
Aristizabal, Katherine ;
Kim, Choonsoo ;
Choudhury, Soumyadip ;
Nah, Yoon-Chae ;
Mucklich, Frank ;
Presser, Volker .
CHEMSUSCHEM, 2017, 10 (18) :3611-3623