On Standard Finite Difference Discretizations of the Elliptic Monge-AmpSre Equation

被引:4
作者
Awanou, Gerard [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, M-C 249, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
Monge-Ampere; Standard finite difference; Aleksandrov solution; Approximation by smooth functions; AMPERE EQUATION; NUMERICAL-SOLUTION; DIRICHLET PROBLEM; 2ND-ORDER; BOUNDARY; OPTIMIZATION; CONTINUATION; DIMENSIONS; SCHEMES;
D O I
10.1007/s10915-016-0220-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an orthogonal lattice with mesh length h on a bounded two-dimensional convex domain , we propose to approximate the Aleksandrov solution of the Monge-AmpSre equation by regularizing the data and discretizing the equation in a subdomain using the standard finite difference method. The Dirichlet data is used to approximate the solution in the remaining part of the domain. We prove the uniform convergence on compact subsets of the solution of the discrete problems to an approximate problem on the subdomain. The result explains the behavior of methods based on the standard finite difference method and designed to numerically converge to non-smooth solutions.
引用
收藏
页码:892 / 904
页数:13
相关论文
共 35 条
[1]   Approximating optimization problems over convex functions [J].
Aguilera, Nestor E. ;
Morin, Pedro .
NUMERISCHE MATHEMATIK, 2008, 111 (01) :1-34
[2]  
Awanou G., 2013, ARXIV14065366
[3]  
Awanou G., 2014, ARXIV13104568
[4]   Convergence Rate of a Stable, Monotone and Consistent Scheme for the Monge-Ampere Equation [J].
Awanou, Gerard .
SYMMETRY-BASEL, 2016, 8 (04)
[5]   Pseudo transient continuation and time marching methods for Monge-AmpSre type equations [J].
Awanou, Gerard .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (04) :907-935
[6]   SMOOTH APPROXIMATIONS OF THE ALEKSANDROV SOLUTION OF THE MONGE-AMPERE EQUATION [J].
Awanou, Gerard .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (02) :427-441
[7]   TWO NUMERICAL METHODS FOR THE ELLIPTIC MONGE-AMPERE EQUATION [J].
Benamou, Jean-David ;
Froese, Brittany D. ;
Oberman, Adam M. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (04) :737-758
[8]   Smooth exhaustion functions in convex domains [J].
Blocki, Z .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (02) :477-484
[9]   On finite element methods for fully nonlinear elliptic equations of second order [J].
Boehmer, Klaus .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) :1212-1249
[10]   C0 PENALTY METHODS FOR THE FULLY NONLINEAR MONGE-AMPERE EQUATION [J].
Brenner, Susanne C. ;
Gudi, Thirupathi ;
Neilan, Michael ;
Sung, Li-Yeng .
MATHEMATICS OF COMPUTATION, 2011, 80 (276) :1979-1995