Reaction of OH radicals with CH3NH2 in the gas phase: experimental (11.7-177.5 K) and computed rate coefficients (10-1000 K)

被引:10
作者
Gonzalez, Daniel [1 ]
Lema-Saavedra, Anxo [2 ]
Espinosa, Sara [1 ]
Martinez-Nunez, Emilio [3 ]
Fernandez-Ramos, Antonio [2 ,3 ]
Canosa, Andre [4 ]
Ballesteros, Bernabe [1 ,5 ]
Jimenez, Elena [1 ,5 ]
机构
[1] Univ Castilla La Mancha, Fac Ciencias & Tecnol Quim, Dept Quim Fis, Avda Camilo Jose Cela 1b, E-13071 Ciudad Real, Spain
[2] Univ Santiago de Compostela, Ctr Singular Invest Quim Biol & Mat Mol CIQUS, Campus Vida,C Jenaro de la Fuente S-N, Santiago De Compostela 15782, Spain
[3] Univ Santiago de Compostela, Fac Quim, Dept Quim Fis, Campus Vida,Avda Ciencias S-N, Santiago De Compostela 15782, Spain
[4] Univ Rennes, IPR Inst Phys Rennes UMR 6251, CNRS, F-35000 Rennes, France
[5] Univ Castilla La Mancha, Inst Invest Combust & Contaminac Atmosfer ICCA, Camino Moledores S-N, E-13071 Ciudad Real, Spain
关键词
BRANCHING RATIOS; RATE CONSTANTS; INTERSTELLAR; KINETICS; GLYCINE; THERMOCHEMISTRY; METHANOL; AMINES;
D O I
10.1039/d2cp03414j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen-bearing molecules, like methylamine (CH3NH2), can be the building blocks of amino acids in the interstellar medium (ISM). At the ultralow temperatures of the ISM, it is important to know its gas-phase reactivity towards interstellar radicals and the products formed. In this work, the kinetics of the OH + CH3NH2 reaction was experimentally and theoretically investigated at low- and high-pressure limits (LPL and HPL) between 10 and 1000 K. Moreover, the CH2NH2 and CH3NH yields were computed in the same temperature range for both pressure regimes. A pulsed CRESU (French acronym for Reaction Kinetics in a Uniform Supersonic Flow) apparatus was employed to determine the rate coefficient, k(T), in the 11.7-177.5 K range. A drastic increase of k(T) when the temperature is lowered was observed in agreement with theoretical calculations, evaluated by the competitive canonical unified statistical (CCUS) theory, below 300 K in the LPL regime. The same trend was observed in the HPL regime below 350 K, but the theoretical k(T) values were higher than the experimental ones. Above 200 K, the calculated rate coefficients are improved with respect to previous computational studies and are in excellent agreement with the experimental literature data. In the LPL, the formation of CH3NH becomes largely dominant below ca. 100 K. Conversely, in the HPL regime, CH2NH2 is the only product below 100 K, whereas CH3NH becomes dominant at 298 K with a branching ratio similar to the one found in the LPL regime (approximate to 70%). At T > 300 K, both reaction channels are competitive independently of the pressure regime.
引用
收藏
页码:23593 / 23601
页数:9
相关论文
共 47 条
[1]   The importance of OH radical-neutral low temperature tunnelling reactions in interstellar clouds using a new model [J].
Acharyya, K. ;
Herbst, E. ;
Caravan, R. L. ;
Shannon, R. J. ;
Blitz, M. A. ;
Heard, D. E. .
MOLECULAR PHYSICS, 2015, 113 (15-16) :2243-2254
[2]   Gas-phase OH radical-initiated oxidation of the 3-halopropenes studied by PLP-LIF in the temperature range 228-388 K [J].
Albaladejo, J ;
Ballesteros, B ;
Jiménez, E ;
de Mera, YD ;
Martínez, E .
ATMOSPHERIC ENVIRONMENT, 2003, 37 (21) :2919-2926
[3]   Computational Thermochemistry: Scale Factor Databases and Scale Factors for Vibrational Frequencies Obtained from Electronic Model Chemistries [J].
Alecu, I. M. ;
Zheng, Jingjing ;
Zhao, Yan ;
Truhlar, Donald G. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (09) :2872-2887
[4]   Prebiotic chemicals-amino acid and phosphorus-in the coma of comet 67P/Churyumov-Gerasimenko [J].
Altwegg, Kathrin ;
Balsiger, Hans ;
Bar-Nun, Akiva ;
Berthelier, Jean-Jacques ;
Bieler, Andre ;
Bochsler, Peter ;
Briois, Christelle ;
Calmonte, Ursina ;
Combi, Michael R. ;
Cottin, Herve ;
De Keyser, Johan ;
Dhooghe, Frederik ;
Fiethe, Bjorn ;
Fuselier, Stephen A. ;
Gasc, Sebastien ;
Gombosi, Tamas I. ;
Hansen, Kenneth C. ;
Haessig, Myrtha ;
Jackel, Annette ;
Kopp, Ernest ;
Korth, Axel ;
Le Roy, Lena ;
Mall, Urs ;
Marty, Bernard ;
Mousis, Olivier ;
Owen, Tobias ;
Reme, Henri ;
Rubin, Martin ;
Semon, Thierry ;
Tzou, Chia-Yu ;
Waite, James Hunter ;
Wurz, Peter .
SCIENCE ADVANCES, 2016, 2 (05)
[5]   REACTIVITY OF OH AND CH3OH BETWEEN 22 AND 64 K: MODELING THE GAS PHASE PRODUCTION OF CH3O IN BARNARD 1b [J].
Antinolo, M. ;
Agundez, M. ;
Jimenez, E. ;
Ballesteros, B. ;
Canosa, A. ;
El Dib, G. ;
Albaladejo, J. ;
Cernicharo, J. .
ASTROPHYSICAL JOURNAL, 2016, 823 (01)
[6]   RATE CONSTANTS FOR REACTION OF OH RADICAL WITH CH3SH AND CH3NH2 OVER TEMPERATURE-RANGE 299-426DEGREESK [J].
ATKINSON, R ;
PERRY, RA ;
PITTS, JN .
JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (04) :1578-1581
[7]  
Ballesteros B., 2022, FRONT ASTRON SP SCI, V8, P1
[8]   Gas-phase kinetics of CH3CHO with OH radicals between 11.7 and 177.5 K [J].
Blazquez, Sergio ;
Gonzalez, Daniel ;
Neeman, Elias M. ;
Ballesteros, Bernabe ;
Agundez, Marcelino ;
Canosa, Andre ;
Albaladejo, Jose ;
Cernicharo, Jose ;
Jimenez, Elena .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (36) :20562-20572
[9]   Experimental and Theoretical Investigation on the OH + CH3C(O)CH3 Reaction at Interstellar Temperatures (T=11.7-64.4 K) [J].
Blazquez, Sergio ;
Gonzalez, Daniel ;
Garcia-Saez, Alberto ;
Antinolo, Maria ;
Bergeat, Astrid ;
Caralp, Francoise ;
Mereau, Raphael ;
Canosa, Andre ;
Ballesteros, Bernabe ;
Albaladejo, Jose ;
Jimenez, Elena .
ACS EARTH AND SPACE CHEMISTRY, 2019, 3 (09) :1873-1883
[10]   Gas-Phase Mechanisms of the Reactions of Reduced Organic Nitrogen Compounds with OH Radicals [J].
Borduas, Nadine ;
Abbatt, Jonathan P. D. ;
Murphy, Jennifer G. ;
So, Sui ;
da Silva, Gabriel .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (21) :11723-11734