A Triplet Semisupervised Deep Network for Fusion Classification of Hyperspectral and LiDAR Data

被引:30
作者
Li, Jiaojiao [1 ]
Ma, Yinle [1 ,2 ]
Song, Rui [1 ,2 ]
Xi, Bobo [1 ,2 ]
Hong, Danfeng [3 ]
Du, Qian [4 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] CAS Key Lab Spectral Imaging Technol, Xian 710119, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing 100094, Peoples R China
[4] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国博士后科学基金;
关键词
Classification; data fusion; deep learning; hyperspectral image; semisupervised; IMAGE CLASSIFICATION; EXTINCTION PROFILES; SEGMENTATION; EXTRACTION; FRAMEWORK;
D O I
10.1109/TGRS.2022.3213513
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Data fusion of hyperspectral and light detection and ranging (LiDAR) is conducive to obtain more comprehensive surface information and thereby achieve better classification result in Earth monitoring systems. However, lack of labeled samples usually limits the performance of supervised classifiers, and the heterogeneity of multisource data also brings great challenges to data fusion. Aiming to address these issues, we propose a triplet semisupervised deep network (TSDN) for fusion classification of hyperspectral and LiDAR. Specifically, we utilize three basic pathways to extract deep learning features: 1-D convolutional neural network (CNN) for spectral features in hyperspectral, 2-D CNN for spatial features in hyperspectral, and Cascade Net for elevation features in LiDAR data. Furthermore, a novel label calibration module (LCM) is proposed to generate effective pseudo labels with high confidence based on the superpixel segmentation by comparing the multiview classification results for assisting semisupervised model training. In addition, we design a novel 3D-Cross Attention Block to enhance the complementary spatial features of multisource data. Experiments on three public HSI-LiDAR benchmarks, Houston, Trento, and MUUFL Gulfport, have demonstrated the effectiveness and superiority of our proposed method.
引用
收藏
页数:13
相关论文
共 52 条
[1]  
Ambartsoumian A., 2018, arXiv
[2]  
Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
[3]   Ontology-Based Classification of Building Types Detected from Airborne Laser Scanning Data [J].
Belgiu, Mariana ;
Tomljenovic, Ivan ;
Lampoltshammer, Thomas J. ;
Blaschke, Thomas ;
Hoefle, Bernhard .
REMOTE SENSING, 2014, 6 (02) :1347-1366
[4]   Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks [J].
Chen, Yushi ;
Jiang, Hanlu ;
Li, Chunyang ;
Jia, Xiuping ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6232-6251
[5]  
Du X., 2017, Technical Report Tech. Rep. 20170417
[6]  
Feng Z., 2020, arXiv
[7]  
Gader P., 2013, REP2013570 U FLOR DE
[8]   Classification of Hyperspectral and LiDAR Data Using Coupled CNNs [J].
Hang, Renlong ;
Li, Zhu ;
Ghamisi, Pedram ;
Hong, Danfeng ;
Xia, Guiyu ;
Liu, Qingshan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07) :4939-4950
[9]   SpectralFormer: Rethinking Hyperspectral Image Classification With Transformers [J].
Hong, Danfeng ;
Han, Zhu ;
Yao, Jing ;
Gao, Lianru ;
Zhang, Bing ;
Plaza, Antonio ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[10]   Graph Convolutional Networks for Hyperspectral Image Classification [J].
Hong, Danfeng ;
Gao, Lianru ;
Yao, Jing ;
Zhang, Bing ;
Plaza, Antonio ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07) :5966-5978