Parameter settings in particle swarm optimisation algorithms: a survey

被引:8
作者
Li, Jing [1 ]
Cheng, Shi [2 ]
机构
[1] Shaanxi Railway Inst, Dept Basic Course, Weinan 714000, Peoples R China
[2] Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Peoples R China
关键词
swarm intelligence; particle swarm optimisation; PSO; parameter investigation; performance comparison;
D O I
10.1504/IJAAC.2022.121124
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In swarm intelligence, 'fair comparison' is critical for the performance evaluation of algorithms. In this paper, the setting of parameters in particle swarm optimisation (PSO) algorithms, which include the population size S, topology structure (number of neighbours k), inertia weight w, acceleration coefficient c(1), c(2), velocity constraint V-max, and the boundary constraint strategy, are reviewed and analysed. Based on the analysis and discussion of parameters and the variants of PSO algorithms, a list of parameter settings of PSO algorithms and a recommendation of PSO comparison are given. To compare variants of PSO algorithms, a recommended solution maybe that all compared algorithms have the same number of population size and the maximum number of fitness evaluations, and the inertia weight w, acceleration coefficient c(1), c(2) are the same settings as its original version.
引用
收藏
页码:164 / 182
页数:19
相关论文
共 42 条
[1]  
[Anonymous], 2012, P 2012 IEEE C EV COM
[2]  
[Anonymous], 2014, SPRINGER P MATH STAT
[3]  
[Anonymous], 2012, hal-00764996
[4]   Impact of Communication Topology in Particle Swarm Optimization [J].
Blackwell, Tim ;
Kennedy, James .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (04) :689-702
[5]   Defining a standard for particle swarm optimization [J].
Bratton, Daniel ;
Kennedy, James .
2007 IEEE SWARM INTELLIGENCE SYMPOSIUM, 2007, :120-+
[6]   Particle Swarm Optimization with an Aging Leader and Challengers [J].
Chen, Wei-Neng ;
Zhang, Jun ;
Lin, Ying ;
Chen, Ni ;
Zhan, Zhi-Hui ;
Chung, Henry Shu-Hung ;
Li, Yun ;
Shi, Yu-Hui .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (02) :241-258
[7]  
Cheng S, 2011, P 2011 IEEE S SWARM, P110
[8]   A quarter century of particle swarm optimization [J].
Cheng, Shi ;
Lu, Hui ;
Lei, Xiujuan ;
Shi, Yuhui .
COMPLEX & INTELLIGENT SYSTEMS, 2018, 4 (03) :227-239
[9]  
Cheng S, 2015, IEEE C EVOL COMPUTAT, P1075, DOI 10.1109/CEC.2015.7257009
[10]   Experimental Study on Boundary Constraints Handling in Particle Swarm Optimization: From Population Diversity Perspective [J].
Cheng, Shi ;
Shi, Yuhui ;
Qin, Quande .
INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2011, 2 (03) :43-69