Learning Structured Representations of Entity Names using Active Learning and Weak Supervision

被引:0
|
作者
Qian, Kun [1 ]
Raman, Poornima Chozhiyath [1 ]
Popa, Lucian [1 ]
Li, Yunyao [1 ]
机构
[1] IBM Res, Cambridge, MA 10598 USA
来源
PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP) | 2020年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Structured representations of entity names are useful for many entity-related tasks such as entity normalization and variant generation. Learning the implicit structured representations of entity names without context and external knowledge is particularly challenging. In this paper, we present a novel learning framework that combines active learning and weak supervision to solve this problem. Our experimental evaluation show that this framework enables the learning of high-quality models from merely a dozen or so labeled examples.
引用
收藏
页码:6376 / 6383
页数:8
相关论文
共 50 条
  • [1] Learning Transformation Invariant Representations with Weak Supervision
    Coors, Benjamin
    Condurache, Alexandru
    Mertins, Alfred
    Geiger, Andreas
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2018), VOL 5: VISAPP, 2018, : 64 - 72
  • [2] Active and Incremental Learning with Weak Supervision
    Brust, Clemens-Alexander
    Kaeding, Christoph
    Denzler, Joachim
    KUNSTLICHE INTELLIGENZ, 2020, 34 (02): : 165 - 180
  • [3] Active and Incremental Learning with Weak Supervision
    Clemens-Alexander Brust
    Christoph Käding
    Joachim Denzler
    KI - Künstliche Intelligenz, 2020, 34 : 165 - 180
  • [4] Policy Learning Using Weak Supervision
    Wang, Jingkang
    Guo, Hongyi
    Zhu, Zhaowei
    Liu, Yang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [5] Segmenting Brazilian legislative text using weak supervision and active learning
    Siqueira, Felipe A.
    Pressato, Diany
    Pereira, Fabiola S. F.
    da Silva, Nadia F. F.
    Souza, Ellen
    Dias, Marcio S.
    de Carvalho, Andre C. P. L. F.
    ARTIFICIAL INTELLIGENCE AND LAW, 2024,
  • [6] Learning Deep Representations for Word Spotting Under Weak Supervision
    Gurjar, Neha
    Sudholt, Sebastian
    Fink, Gernot A.
    2018 13TH IAPR INTERNATIONAL WORKSHOP ON DOCUMENT ANALYSIS SYSTEMS (DAS), 2018, : 7 - 12
  • [7] LEARNING MUSIC AUDIO REPRESENTATIONS VIA WEAK LANGUAGE SUPERVISION
    Manco, Ilaria
    Benetos, Emmanouil
    Quinton, Elio
    Fazekas, Gyorgy
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 456 - 460
  • [8] Named Entity Recognition through Deep Representation Learning and Weak Supervision
    Parker, Jerrod
    Yu, Shi
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 3828 - 3839
  • [9] Learning Concept Abstractness Using Weak Supervision
    Rabinovich, Ella
    Sznajder, Benjamin
    Spector, Artem
    Shnayderman, Ilya
    Aharonov, Ranit
    Konopnicki, David
    Slonim, Noam
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 4854 - 4859
  • [10] Deep Indexed Active Learning for Matching Heterogeneous Entity Representations
    Jain, Arjit
    Sarawagi, Sunita
    Sen, Prithviraj
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2021, 15 (01): : 31 - 45