Local well-posedness and ill-posedness on the equation of type □u = uk(partial derivativeu)α

被引:9
作者
Fang, DY [1 ]
Wang, CB [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
关键词
semilinear wave equation; low regularity; local well-posedness; ill-posedness;
D O I
10.1142/S0252959905000294
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper undertakes a systematic treatment of the low regularity local well-posedness and ill-posedness theory in H-s and H-s for semilinear wave equations with polynomial nonlinearity in u and partial derivative u. This ill-posed result concerns the focusing type equations with nonlinearity on u and partial derivative(t)u.
引用
收藏
页码:361 / 378
页数:18
相关论文
共 16 条
[1]  
Beals M, 1996, COMMUN PART DIFF EQ, V21, P79
[2]  
Bergh J., 1976, INTERPOLATION SPACES
[3]   GENERALIZED STRICHARTZ INEQUALITIES FOR THE WAVE-EQUATION [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :50-68
[4]  
HUGHES TJR, 1977, ARCH RATION MECH AN, V63, P273, DOI 10.1007/BF00251584
[5]   WEAK AND YET WEAKER SOLUTIONS OF SEMILINEAR WAVE-EQUATIONS [J].
KAPITANSKI, L .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (9-10) :1629-1676
[6]   Endpoint Strichartz estimates [J].
Keel, M ;
Tao, T .
AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (05) :955-980
[7]   INSTABILITY AND NONEXISTENCE OF GLOBAL SOLUTIONS TO NONLINEAR-WAVE EQUATIONS OF FORM PUTT = -AU + F(U) [J].
LEVINE, HA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 192 :1-21
[8]   ON EXISTENCE AND SCATTERING WITH MINIMAL REGULARITY FOR SEMILINEAR WAVE-EQUATIONS [J].
LINDBLAD, H ;
SOGGE, CD .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (02) :357-426
[9]   Counterexamples to local existence for semi-linear wave equations [J].
Lindblad, H .
AMERICAN JOURNAL OF MATHEMATICS, 1996, 118 (01) :1-16
[10]   A SHARP COUNTEREXAMPLE TO THE LOCAL EXISTENCE OF LOW-REGULARITY SOLUTIONS TO NONLINEAR-WAVE EQUATIONS [J].
LINDBLAD, H .
DUKE MATHEMATICAL JOURNAL, 1993, 72 (02) :503-539