JASP: Graphical Statistical Software for Common Statistical Designs

被引:566
作者
Love, Jonathon [1 ]
Selker, Ravi [2 ]
Marsman, Maarten [2 ]
Jamil, Tahira [2 ]
Dropmann, Damian [2 ]
Verhagen, Josine [2 ]
Ly, Alexander [2 ]
Gronau, Quentin F. [2 ]
Smira, Martin [3 ]
Epskamp, Sacha [2 ]
Matzke, Dora [2 ]
Wild, Anneliese [2 ]
Knight, Patrick [2 ]
Rouder, Jeffrey N. [4 ,5 ]
Morey, Richard D. [6 ]
Wagenmakers, Eric-Jan [2 ]
机构
[1] Univ Newcastle, Callaghan, NSW, Australia
[2] Univ Amsterdam, Amsterdam, Netherlands
[3] Masaryk Univ, Brno, Czech Republic
[4] Univ Calif Irvine, Irvine, CA USA
[5] Univ Missouri, Columbia, MO 65211 USA
[6] Cardiff Univ, Cardiff, S Glam, Wales
来源
JOURNAL OF STATISTICAL SOFTWARE | 2019年 / 88卷 / 02期
关键词
JASP; statistical software; Bayesian inference; graphical user interface; basic statistics; DEFAULT BAYES FACTORS; NULL HYPOTHESIS; TESTS;
D O I
10.18637/jss.v088.i02
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces JASP, a free graphical software package for basic statistical procedures such as t tests, ANOVAs, linear regression models, and analyses of contingency tables. JASP is open-source and differentiates itself from existing open-source solutions in two ways. First, JASP provides several innovations in user interface design; specifically, results are provided immediately as the user makes changes to options, output is attractive, minimalist, and designed around the principle of progressive disclosure, and analyses can be peer reviewed without requiring a "syntax". Second, JASP provides some of the recent developments in Bayesian hypothesis testing and Bayesian parameter estimation. The ease with which these relatively complex Bayesian techniques are available in JASP encourages their broader adoption and furthers a more inclusive statistical reporting practice. The JASP analyses are implemented in R and a series of R packages.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 32 条
  • [1] Estimating the reproducibility of psychological science
    Aarts, Alexander A.
    Anderson, Joanna E.
    Anderson, Christopher J.
    Attridge, Peter R.
    Attwood, Angela
    Axt, Jordan
    Babel, Molly
    Bahnik, Stepan
    Baranski, Erica
    Barnett-Cowan, Michael
    Bartmess, Elizabeth
    Beer, Jennifer
    Bell, Raoul
    Bentley, Heather
    Beyan, Leah
    Binion, Grace
    Borsboom, Denny
    Bosch, Annick
    Bosco, Frank A.
    Bowman, Sara D.
    Brandt, Mark J.
    Braswell, Erin
    Brohmer, Hilmar
    Brown, Benjamin T.
    Brown, Kristina
    Bruening, Jovita
    Calhoun-Sauls, Ann
    Callahan, Shannon P.
    Chagnon, Elizabeth
    Chandler, Jesse
    Chartier, Christopher R.
    Cheung, Felix
    Christopherson, Cody D.
    Cillessen, Linda
    Clay, Russ
    Cleary, Hayley
    Cloud, Mark D.
    Cohn, Michael
    Cohoon, Johanna
    Columbus, Simon
    Cordes, Andreas
    Costantini, Giulio
    Alvarez, Leslie D. Cramblet
    Cremata, Ed
    Crusius, Jan
    DeCoster, Jamie
    DeGaetano, Michelle A.
    Della Penna, Nicolas
    den Bezemer, Bobby
    Deserno, Marie K.
    [J]. SCIENCE, 2015, 349 (6251)
  • [2] [Anonymous], 2006, Journal of Statistical Software, DOI gfpqfc
  • [3] [Anonymous], 2013, IBM SPSS Statistics 22
  • [4] Berger J., 2006, ENCY STAT SCI, V1, P378, DOI DOI 10.1002/0471667196.ESS0985.PUB2
  • [5] Eddelbuettel D, 2015, RINSIDE 0 2 13
  • [6] Eddelbuettel D, 2011, J STAT SOFTW, V40, P1
  • [7] Fellows I, 2012, J STAT SOFTW, V49, P1
  • [8] Fox J., 2018, R COMPANION APPL REG
  • [9] Functional behavior assessment in schools: Current research findings and future directions
    Fox J.
    Davis C.
    [J]. Journal of Behavioral Education, 2005, 14 (1) : 1 - 4
  • [10] GUNEL E, 1974, BIOMETRIKA, V61, P545