共 45 条
Responses of Gmelina arborea, a tropical deciduous tree species, to elevated atmospheric CO2: Growth, biomass productivity and carbon sequestration efficacy
被引:14
|作者:
Rasineni, Girish K.
[1
]
Guha, Anirban
[1
]
Reddy, Attipalli R.
[1
]
机构:
[1] Univ Hyderabad, Dept Plant Sci, Photosynth & Plant Stress Biol Lab, Hyderabad 500046, Andhra Pradesh, India
关键词:
Biomass yields;
Carbon sequestration;
Elevated CO2;
Gmelina arborea;
Productivity;
PHOTOSYNTHETIC DOWN-REGULATION;
LIQUIDAMBAR-STYRACIFLUA L;
STOMATAL CONDUCTANCE;
GAS-EXCHANGE;
RISING CO2;
NODULATED ALFALFA;
DIOXIDE;
ACCLIMATION;
ENRICHMENT;
PLANT;
D O I:
10.1016/j.plantsci.2011.07.005
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
The photosynthetic response of trees to rising CO2 concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO2 responses in trees have either doubled the gas concentration (>700 mu mol mol(-1)) or used single large addition of CO2 (500-600 mu mol mol(-1)). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO2 concentration (460 mu mol mol(-1)). Net photosynthetic rate of Gmelina was similar to 30% higher in plants grown in elevated CO2 compared with ambient CO2-grown plants. The elevated CO2 concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in F-V/F-M, ABS/CSm, ET0/CSm and RuBPcase activity. The study also revealed that elevated CO2 conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered similar to 2100 g tree(-1) carbon after 120 days of treatment when compared to ambient CO2-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatorydown-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 mu mol mol(-1) CO2. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:428 / 438
页数:11
相关论文