Responses of Gmelina arborea, a tropical deciduous tree species, to elevated atmospheric CO2: Growth, biomass productivity and carbon sequestration efficacy

被引:14
|
作者
Rasineni, Girish K. [1 ]
Guha, Anirban [1 ]
Reddy, Attipalli R. [1 ]
机构
[1] Univ Hyderabad, Dept Plant Sci, Photosynth & Plant Stress Biol Lab, Hyderabad 500046, Andhra Pradesh, India
关键词
Biomass yields; Carbon sequestration; Elevated CO2; Gmelina arborea; Productivity; PHOTOSYNTHETIC DOWN-REGULATION; LIQUIDAMBAR-STYRACIFLUA L; STOMATAL CONDUCTANCE; GAS-EXCHANGE; RISING CO2; NODULATED ALFALFA; DIOXIDE; ACCLIMATION; ENRICHMENT; PLANT;
D O I
10.1016/j.plantsci.2011.07.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The photosynthetic response of trees to rising CO2 concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO2 responses in trees have either doubled the gas concentration (>700 mu mol mol(-1)) or used single large addition of CO2 (500-600 mu mol mol(-1)). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO2 concentration (460 mu mol mol(-1)). Net photosynthetic rate of Gmelina was similar to 30% higher in plants grown in elevated CO2 compared with ambient CO2-grown plants. The elevated CO2 concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in F-V/F-M, ABS/CSm, ET0/CSm and RuBPcase activity. The study also revealed that elevated CO2 conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered similar to 2100 g tree(-1) carbon after 120 days of treatment when compared to ambient CO2-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatorydown-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 mu mol mol(-1) CO2. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:428 / 438
页数:11
相关论文
共 50 条
  • [41] Flooding constraints on tree (Taxodium distichum) and herb growth responses to elevated CO2
    Megonigal, JP
    Vann, CD
    Wolf, AA
    WETLANDS, 2005, 25 (02) : 430 - 438
  • [42] GROWTH-RESPONSES OF 7 MAJOR COOCCURRING TREE SPECIES OF THE NORTHEASTERN UNITED-STATES TO ELEVATED CO2
    BAZZAZ, FA
    COLEMAN, JS
    MORSE, SR
    CANADIAN JOURNAL OF FOREST RESEARCH, 1990, 20 (09) : 1479 - 1484
  • [43] Growth response and acclimation of CO2 exchange characteristics to elevated temperatures in tropical tree seedlings
    Cheesman, Alexander W.
    Winter, Klaus
    JOURNAL OF EXPERIMENTAL BOTANY, 2013, 64 (12) : 3817 - 3828
  • [44] Marked growth response of communities of two tropical tree species to elevated CO2 when soil nutrient limitation is removed
    Winter, K
    Garcia, M
    Gottsberger, R
    Popp, M
    FLORA, 2001, 196 (01) : 47 - 58
  • [45] Photosynthetic responses of four urban tree species exposed to elevated CO2 and for elevated O3
    Xu, Sheng
    Gao, Jiang-Yan
    Chen, Wei
    He, Xing-Yuan
    Huang, Yan-Qing
    BIOTECHNOLOGY, CHEMICAL AND MATERIALS ENGINEERING II, PTS 1 AND 2, 2013, 641-642 : 22 - 25
  • [46] Species-specific effects of phosphorus addition on tropical tree seedling response to elevated CO2
    Thompson, Jennifer B.
    Slot, Martijn
    Dalling, James W.
    Winter, Klaus
    Turner, Benjamin L.
    Zalamea, Paul-Camilo
    FUNCTIONAL ECOLOGY, 2019, 33 (10) : 1871 - 1881
  • [47] Centennial-scale atmospheric CO2 rise increased photosynthetic efficiency in a tropical tree species
    Zwartsenberg, Sophie A.
    Sterck, Frank J.
    Haddad, Lenny
    Schleucher, Jurgen
    Anten, Niels P. R.
    Morales, Alejandro
    Cernusak, Lucas A.
    Medina-Vega, Jose A.
    Rahman, Mizanur
    Vlam, Mart
    Heinrich, Ingo
    Zuidema, Pieter A.
    NEW PHYTOLOGIST, 2025, 246 (01) : 131 - 143
  • [48] Centennial-scale atmospheric CO2 rise increased photosynthetic efficiency in a tropical tree species
    Zwartsenberg, Sophie A.
    Sterck, Frank J.
    Haddad, Lenny
    Schleucher, Juergen
    Anten, Niels P. R.
    Morales, Alejandro
    Cernusak, Lucas A.
    Medina-Vega, Jose A.
    Rahman, Mizanur
    Vlam, Mart
    Heinrich, Ingo
    Zuidema, Pieter A.
    NEW PHYTOLOGIST, 2025,
  • [49] Elevated atmospheric CO2 effects on biomass production and soil carbon in conventional and conservation cropping systems
    Prior, SA
    Runion, GB
    Rogers, HH
    Torbert, HA
    Reeves, DW
    GLOBAL CHANGE BIOLOGY, 2005, 11 (04) : 657 - 665
  • [50] Direct effect of elevated CO2 on nocturnal in situ leaf respiration in nine temperate deciduous tree species is small
    Amthor, JS
    TREE PHYSIOLOGY, 2000, 20 (02) : 139 - 144