Responses of Gmelina arborea, a tropical deciduous tree species, to elevated atmospheric CO2: Growth, biomass productivity and carbon sequestration efficacy

被引:14
|
作者
Rasineni, Girish K. [1 ]
Guha, Anirban [1 ]
Reddy, Attipalli R. [1 ]
机构
[1] Univ Hyderabad, Dept Plant Sci, Photosynth & Plant Stress Biol Lab, Hyderabad 500046, Andhra Pradesh, India
关键词
Biomass yields; Carbon sequestration; Elevated CO2; Gmelina arborea; Productivity; PHOTOSYNTHETIC DOWN-REGULATION; LIQUIDAMBAR-STYRACIFLUA L; STOMATAL CONDUCTANCE; GAS-EXCHANGE; RISING CO2; NODULATED ALFALFA; DIOXIDE; ACCLIMATION; ENRICHMENT; PLANT;
D O I
10.1016/j.plantsci.2011.07.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The photosynthetic response of trees to rising CO2 concentrations largely depends on source-sink relations, in addition to differences in responsiveness by species, genotype, and functional group. Previous studies on elevated CO2 responses in trees have either doubled the gas concentration (>700 mu mol mol(-1)) or used single large addition of CO2 (500-600 mu mol mol(-1)). In this study, Gmelina arborea, a fast growing tropical deciduous tree species, was selected to determine the photosynthetic efficiency, growth response and overall source-sink relations under near elevated atmospheric CO2 concentration (460 mu mol mol(-1)). Net photosynthetic rate of Gmelina was similar to 30% higher in plants grown in elevated CO2 compared with ambient CO2-grown plants. The elevated CO2 concentration also had significant effect on photochemical and biochemical capacities evidenced by changes in F-V/F-M, ABS/CSm, ET0/CSm and RuBPcase activity. The study also revealed that elevated CO2 conditions significantly increased absolute growth rate, above ground biomass and carbon sequestration potential in Gmelina which sequestered similar to 2100 g tree(-1) carbon after 120 days of treatment when compared to ambient CO2-grown plants. Our data indicate that young Gmelina could accumulate significant biomass and escape acclimatorydown-regulation of photosynthesis due to high source-sink capacity even with an increase of 100 mu mol mol(-1) CO2. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:428 / 438
页数:11
相关论文
共 50 条
  • [21] Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2
    Mohan, Jacqueline E.
    Ziska, Lewis H.
    Schlesinger, William H.
    Thomas, Richard B.
    Sicher, Richard C.
    George, Kate
    Clark, James S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (24) : 9086 - 9089
  • [22] Responses of Legume Versus Nonlegume Tropical Tree Seedlings to Elevated CO2 Concentration
    Cernusak, Lucas A.
    Winter, Klaus
    Martinez, Carlos
    Correa, Edwin
    Aranda, Jorge
    Garcia, Milton
    Jaramillo, Carlos
    Turner, Benjamin L.
    PLANT PHYSIOLOGY, 2011, 157 (01) : 372 - 385
  • [23] Molecular targets of elevated [CO2] in leaves and stems of Populus deltoides:: implications for future tree growth and carbon sequestration
    Druart, N
    Rodríguez-Buey, M
    Barron-Gafford, G
    Sjödin, A
    Bhalerao, R
    Hurry, V
    FUNCTIONAL PLANT BIOLOGY, 2006, 33 (02) : 121 - 131
  • [24] Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2
    Körner, C
    Asshoff, R
    Bignucolo, O
    Hättenschwiler, S
    Keel, SG
    Peláez-Riedl, S
    Pepin, S
    Siegwolf, RTW
    Zotz, G
    SCIENCE, 2005, 309 (5739) : 1360 - 1362
  • [25] Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree
    P. Coley
    M. Massa
    C. Lovelock
    K. Winter
    Oecologia, 2002, 133 : 62 - 69
  • [26] Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree
    Coley, PD
    Massa, M
    Lovelock, CE
    Winter, K
    OECOLOGIA, 2002, 133 (01) : 62 - 69
  • [27] Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2
    Gill, RA
    Anderson, LJ
    Polley, HW
    Johnson, HB
    Jackson, RB
    ECOLOGY, 2006, 87 (01) : 41 - 52
  • [28] Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2
    Joseph A. M. Holtum
    Klaus Winter
    Planta, 2003, 218 : 152 - 158
  • [29] Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2
    Holtum, JAM
    Winter, K
    PLANTA, 2003, 218 (01) : 152 - 158
  • [30] Adaptation of tree growth to elevated CO2:: quantitative trait loci for biomass in Populus
    Rae, Anne M.
    Tricker, Penny J.
    Bunn, Stephen M.
    Taylor, Gail
    NEW PHYTOLOGIST, 2007, 175 (01) : 59 - 69