Multigranularity Feature Fusion Convolutional Neural Network for Seismic Data Denoising

被引:8
作者
Feng, Jun [1 ,2 ]
Li, Xiaoqin [1 ,2 ]
Liu, Xi [1 ,2 ]
Chen, Chaoxian [3 ]
机构
[1] Chengdu Univ Technol, Coll Math & Phys, Chengdu 610059, Peoples R China
[2] Chengdu Univ Technol, Geomath Key Lab Sichuan Prov, Chengdu 610059, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国博士后科学基金;
关键词
Noise reduction; Feature extraction; Transforms; Convolutional neural networks; Kernel; Convolution; Data models; Convolutional neural network (CNN); denoising; multigranularity feature fusion (MFF); seismic data; RANDOM NOISE ATTENUATION; EMPIRICAL-MODE DECOMPOSITION; TRANSFORM; DOMAIN; SIGNAL; REDUCTION;
D O I
10.1109/TGRS.2021.3123509
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Seismic data denoising is an important part of seismic data processing and has attracted much attention in recent years. With the rapid development of neural networks, convolutional neural network (CNN)-based denoising methods have been widely studied and used in seismic data denoising due to their unique convolutional layer and weight sharing characteristics. However, the existing CNN-based seismic data denoising methods mainly use fixed-size convolution kernels in a certain layer, which forces the different kernels to extract features from areas of the same size and fails to extract features from various granularities. To overcome this limitation, we make full use of the local similarity of seismic sections, use different sizes of convolution kernels to parallelly extract features from different granularities, and propose a multigranularity feature fusion CNN (MFFCNN) method to remove random noise from seismic data. This method uses convolution kernels with different sizes to extract features from various granularities and uses feature fusion structures to fuse the extracted features. Experimental results show that the MFFCNN proposed in this article can better deal with details and texture information than the compared methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Multiscale Spatial Attention Network for Seismic Data Denoising
    Dong, Xintong
    Lin, Jun
    Lu, Shaoping
    Wang, Hongzhou
    Li, Yue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [2] Seismic Random Noise Attenuation by Applying Multiscale Denoising Convolutional Neural Network
    Zhong, Tie
    Cheng, Ming
    Dong, Xintong
    Wu, Ning
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [3] Denoising Deep Learning Network Based on Singular Spectrum Analysis--DAS Seismic Data Denoising With Multichannel SVDDCNN
    Feng, Qiankun
    Li, Yue
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] Simultaneous Seismic Data Denoising and Reconstruction With Attention-Based Wavelet-Convolutional Neural Network
    Dodda, Vineela Chandra
    Kuruguntla, Lakshmi
    Mandpura, Anup Kumar
    Elumalai, Karthikeyan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] DnResNeXt Network for Desert Seismic Data Denoising
    Yao, Haiyang
    Ma, Haitao
    Li, Yue
    Feng, Qiankun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] Distributed Acoustic Sensing Vertical Seismic Profile Data Denoising Based on Multistage Denoising Network
    Li, Yue
    Zhang, Man
    Zhao, Yuxing
    Wu, Ning
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [7] Poststack Seismic Data Denoising Based on 3-D Convolutional Neural Network
    Liu, Dawei
    Wang, Wei
    Wang, Xiaokai
    Wang, Cheng
    Pei, Jiangyun
    Chen, Wenchao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (03): : 1598 - 1629
  • [8] A Convolutional Autoencoder Method for Simultaneous Seismic Data Reconstruction and Denoising
    Jiang, Jinsheng
    Ren, Haoran
    Zhang, Meng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] SAR Target Classification Using the Multikernel-Size Feature Fusion-Based Convolutional Neural Network
    Ai, Jiaqiu
    Mao, Yuxiang
    Luo, Qiwu
    Jia, Lu
    Xing, Mengdao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Multilabel Convolutional Network With Feature Denoising and Details Supplement
    Gu, Tianhao
    Wang, Zhe
    Fang, Zhongli
    Zhu, Zonghai
    Yang, Hai
    Li, Dongdong
    Du, Wenli
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (11) : 8349 - 8361