Asymptotic behavior of the least energy solution of a problem with competing powers

被引:8
作者
Dancer, E. N. [1 ]
Santra, Sanjiban [1 ]
Wei, Juncheng [2 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
澳大利亚研究理事会;
关键词
Least energy solution; Asymptotic behavior; Zero mass; SEMILINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; SUPERCRITICAL GROWTH; SINGULAR SOLUTIONS; SYMMETRY; LOCATION;
D O I
10.1016/j.jfa.2011.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the problem epsilon(2)Delta u - u(q) + u(P) = 0 in Omega, u > 0 in Omega, u = 0 on partial derivative Omega. Here Omega is a smooth bounded domain in R(N), 1 < q < p < N+2/N-2 if N >= 3 and epsilon is a small positive parameter. We study the asymptotic behavior of the least energy solution as e goes to zero in the case q <= N/N-2. We show that the limiting behavior is dominated by the singular solution Delta G - G(q) = 0 in Omega\{P}, G = 0 on partial derivative Omega. The reduced energy is of nonlocal type. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2094 / 2134
页数:41
相关论文
共 25 条
[1]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[2]  
Bethuel F., 1994, Progress in Nonlinear Differential Equations and Their Applications, V13
[3]  
BREZIS H, 1980, ARCH RATION MECH AN, V75, P1
[4]  
BREZIS H, 1987, ARCH RATION MECH AN, V99, P249
[5]   Singular perturbed problems in the zero mass case: asymptotic behavior of spikes [J].
Dancer, E. N. ;
Santra, Sanjiban .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (02) :185-225
[6]   SOME NOTES ON THE METHOD OF MOVING PLANES [J].
DANCER, EN .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 46 (03) :425-434
[7]   Two-bubble solutions in the super-critical Bahri-Coron's problem [J].
del Pino, M ;
Felmer, P ;
Musso, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2003, 16 (02) :113-145
[8]  
del Pino M, 1999, INDIANA U MATH J, V48, P883
[9]   Singular limits in Liouville-type equations [J].
del Pino, M ;
Kowalczyk, M ;
Musso, M .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 24 (01) :47-81
[10]   Variational reduction for Ginzburg-Landau vortices [J].
del Pino, Manuel ;
Kowalczyk, Michal ;
Musso, Monica .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 239 (02) :497-541