Intensity Coding in Electric Hearing: Effects of Electrode Configurations and Stimulation Waveforms

被引:13
作者
Chua, Tiffany Elise H. [1 ]
Bachman, Mark [1 ]
Zeng, Fan-Gang [1 ]
机构
[1] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92697 USA
基金
美国国家卫生研究院;
关键词
COCHLEAR IMPLANT USERS; MINIMUM AIC PROCEDURE; LOUDNESS GROWTH; AUDITORY-NERVE; AMPLITUDE-MODULATION; SPEECH RECOGNITION; DYNAMIC-RANGE; PULSE-RATE; TEMPORAL INFORMATION; PHONEME RECOGNITION;
D O I
10.1097/AUD.0b013e31821a47df
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
Objectives: Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. Design: The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were five Clarion cochlear implant users. For each subject, data from apical, middle, and basal electrode positions were collected when possible. Results: Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. Conclusions: The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen.
引用
收藏
页码:679 / 689
页数:11
相关论文
共 65 条
[1]  
AKAIKE H, 1979, BIOMETRIKA, V66, P237, DOI 10.1093/biomet/66.2.237
[2]   BAYESIAN-ANALYSIS OF MINIMUM AIC PROCEDURE [J].
AKAIKE, H .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1978, 30 (01) :9-14
[3]  
[Anonymous], 2002, Model selection and multimodel inference: a practical informationtheoretic approach
[4]   Auditory cortical images of cochlear-implant stimuli: Dependence on electrode configuration [J].
Bierer, JA ;
Middlebrooks, JC .
JOURNAL OF NEUROPHYSIOLOGY, 2002, 87 (01) :478-492
[5]   Threshold and channel interaction in cochlear implant users: Evaluation of the tripolar electrode configuration [J].
Bierer, Julie Arenberg .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2007, 121 (03) :1642-1653
[6]   DIFFERENTIAL ELECTRICAL EXCITATION OF THE AUDITORY-NERVE [J].
BLACK, RC ;
CLARK, GM .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1980, 67 (03) :868-874
[7]  
Bonham BH., 2008, HEARING RES, V6, P6
[8]   Speech recognition with a cochlear implant using triphasic charge-balanced pulses [J].
Bonnet, RM ;
Frijns, JHM ;
Peeters, S ;
Briaire, JJ .
ACTA OTO-LARYNGOLOGICA, 2004, 124 (04) :371-375
[10]   ELECTROCHEMICAL CONSIDERATIONS FOR SAFE ELECTRICAL-STIMULATION OF NERVOUS-SYSTEM WITH PLATINUM-ELECTRODES [J].
BRUMMER, SB ;
TURNER, MJ .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1977, 24 (01) :59-63