Learning Stable Nonlinear Dynamical Systems With Gaussian Mixture Models

被引:567
作者
Khansari-Zadeh, S. Mohammad [1 ]
Billard, Aude [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Engn, CH-1015 Lausanne, Switzerland
关键词
Dynamical systems (DS); Gaussian mixture model; imitation learning; point-to-point motions; stability analysis;
D O I
10.1109/TRO.2011.2159412
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper presents a method to learn discrete robot motions from a set of demonstrations. We model a motion as a nonlinear autonomous (i.e., time-invariant) dynamical system (DS) and define sufficient conditions to ensure global asymptotic stability at the target. We propose a learning method, which is called Stable Estimator of Dynamical Systems (SEDS), to learn the parameters of the DS to ensure that all motions closely follow the demonstrations while ultimately reaching and stopping at the target. Time-invariance and global asymptotic stability at the target ensures that the system can respond immediately and appropriately to perturbations that are encountered during the motion. The method is evaluated through a set of robot experiments and on a library of human handwriting motions.
引用
收藏
页码:943 / 957
页数:15
相关论文
共 50 条
[31]   Approximating Posterior Cramer-Rao Bounds for Nonlinear Filtering Problems Using Gaussian Mixture Models [J].
Zhang, Shuo ;
Chen, Defeng ;
Fu, Tuo ;
Cao, Huawei .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (02) :984-1001
[32]   On the Uncertainty Identification for Linear Dynamic Systems Using Stochastic Embedding Approach with Gaussian Mixture Models [J].
Orellana, Rafael ;
Carvajal, Rodrigo ;
Escarate, Pedro ;
Aguero, Juan C. .
SENSORS, 2021, 21 (11)
[33]   Semisupervised Bayesian Gaussian Mixture Models for Non-Gaussian Soft Sensor [J].
Shao, Weiming ;
Ge, Zhiqiang ;
Song, Zhihuan .
IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (07) :3455-3468
[34]   GPGPU Implementation of Variational Bayesian Gaussian Mixture Models [J].
Nishimoto, Hiroki ;
Zhang, Renyuan ;
Nakashima, Yasuhiko .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (03) :611-622
[35]   Random swap EM algorithm for Gaussian mixture models [J].
Zhao, Qinpei ;
Hautamaki, Ville ;
Karkkainen, Ismo ;
Franti, Pasi .
PATTERN RECOGNITION LETTERS, 2012, 33 (16) :2120-2126
[36]   A robust EM clustering algorithm for Gaussian mixture models [J].
Yang, Miin-Shen ;
Lai, Chien-Yo ;
Lin, Chih-Ying .
PATTERN RECOGNITION, 2012, 45 (11) :3950-3961
[37]   Video Compressive Sensing Using Gaussian Mixture Models [J].
Yang, Jianbo ;
Yuan, Xin ;
Liao, Xuejun ;
Llull, Patrick ;
Brady, David J. ;
Sapiro, Guillermo ;
Carin, Lawrence .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (11) :4863-4878
[38]   An optimisation of Gaussian mixture models for integer processing units [J].
Claudio Salvadori ;
Matteo Petracca ;
Jesus Martinez del Rincon ;
Sergio A. Velastin ;
Dimitrios Makris .
Journal of Real-Time Image Processing, 2017, 13 :273-289
[39]   Pattern Recognition with Gaussian Mixture Models of Marginal Distributions [J].
Omachi, Masako ;
Omachi, Shinichiro .
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (02) :317-324
[40]   An optimisation of Gaussian mixture models for integer processing units [J].
Salvadori, Claudio ;
Petracca, Matteo ;
del Rincon, Jesus Martinez ;
Velastin, Sergio A. ;
Makris, Dimitrios .
JOURNAL OF REAL-TIME IMAGE PROCESSING, 2017, 13 (02) :273-289