Heat shock proteins in Varroa destructor exposed to heat stress and in-hive acaricides

被引:4
作者
Garrido, P. M. [1 ,2 ]
Porrini, M. P. [1 ,2 ]
Damiani, N. [1 ,2 ]
Ruffinengo, S. [1 ,3 ]
Martinez Noel, G. M. A. [4 ]
Salerno, G. [4 ]
Eguaras, M. J. [1 ,2 ]
机构
[1] Univ Nacl Mar del Plata, Fac Ciencias Exactas & Nat, CIAS, Funes 3350, Mar Del Plata, Buenos Aires, Argentina
[2] Univ Nacl Mar del Plata, Fac Ciencias Exactas & Nat, Inst Invest Prod Sanidad & Ambiente IIPROSAM, CONICET,CIC, Funes 3350, Mar Del Plata, Buenos Aires, Argentina
[3] Univ Nacl Mar del Plata, Fac Ciencias Agr, Grp Apicultura, Ruta 226,Km 73,5, Balcarce, Buenos Aires, Argentina
[4] Consejo Nacl Invest Cient & Tecn, Inst Invest Biodiversidad & Biotecnol INBIOTEC, Vieytes 3103, Mar Del Plata, Buenos Aires, Argentina
关键词
Varroa destructor; Heat shock; Synthetic acaricides; Hsp70; expression; HSP70 GENE FAMILY; HONEY-BEE; JACOBSONI OUD; RESISTANCE; EXPRESSION; COUMAPHOS; HORMESIS; TEMPERATURE; DROSOPHILA; FLUVALINATE;
D O I
10.1007/s10493-018-0319-y
中图分类号
Q96 [昆虫学];
学科分类号
摘要
Varroa destructor is one of the major pests that affect honeybees around the world. Chemical treatments are common to control varroosis, but mites possess biochemical adaptive mechanisms to resist these treatments, enabling them to survive. So far, no information is available regarding whether these pesticides can induce the expression of heat shock protein (Hsp) as a common protective mechanism against tissue damage. The aims of this study were to determine differences in heat shock tolerance between mites collected from brood combs and phoretic ones, and to examine patterns of protein expression of Hsp70 that occur in various populations of V. destructor after exposure to acaricides commonly employed in beekeeping, such as flumethrin, tau-fluvalinate and coumaphos. Curiously, mites obtained from brood cells were alive at 40 degrees C, unlike phoretic mites that reached 100% mortality, demonstrating differential thermo-tolerance. Heat treatment induced Hsp70 in mites 4x more than in control mites and no differences in response were observed in phoretic versus cell-brood-obtained mites. Dose-response assays were carried out at increasing acaricide concentrations. Each population showed a different stress response to acaricides despite belonging to the same geographic region. In one of them, coumaphos acted as a hormetic stressor. Pyrethroids also induced Hsp70, but mite population seemed sensitive to this treatment. We concluded that Hsp70 could represent a robust biomarker for measuring exposure of V. destructor to thermal and chemical stress, depending on the acaricide class and interpopulation variability. This is relevant because it is the first time that stress response is analyzed in this biological model, providing new insight in host-parasite-xenobiotic interaction.
引用
收藏
页码:421 / 433
页数:13
相关论文
共 61 条