On Coset Leader Graphs of LDPC Codes

被引:3
作者
Iceland, Eran [1 ]
Samorodnitsky, Alex [1 ]
机构
[1] Hebrew Univ Jerusalem, Sch Engn & Comp Sci, IL-91904 Jerusalem, Israel
基金
以色列科学基金会;
关键词
Low-density parity-check (LDPC) code; minimum distance; UPPER-BOUNDS;
D O I
10.1109/TIT.2015.2438716
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Our main technical result is that, in the coset leader graph of a linear binary code of block length n, the metric balls spanned by constant-weight vectors grow exponentially slower than those in {0, 1}(n). Following the approach of Friedman and Tillich, we use this fact to improve on the first linear programming bound on the rate of low-density parity check (LDPC) codes, as the function of their minimal relative distance. This improvement, combined with the techniques of Ben-Haim and Litsyn, improves the rate versus distance bounds for LDPC codes in a significant subrange of relative distances.
引用
收藏
页码:4158 / 4163
页数:6
相关论文
共 7 条
[1]  
[Anonymous], 1963, Low-density parity-check codes
[2]   Upper bounds on the rate of LDPC codes as a function of minimum distance [J].
Ben-Haim, Y ;
Litsyn, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (05) :2092-2100
[3]   Upper bounds on the rate of LDPC codes [J].
Burshtein, D ;
Krivelevich, M ;
Litsyn, S ;
Miller, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (09) :2437-2449
[4]  
Delsarte P., 1973, PHILIPS RES REP S
[5]   Generalized Alon-Boppana theorems and error-correcting codes [J].
Friedman, J ;
Tillich, JP .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2005, 19 (03) :700-718
[6]  
MacWilliams F. J., 1977, THEORY ERROR CORRECT, V16
[7]   NEW UPPER BOUNDS ON RATE OF A CODE VIA DELSARTE-MACWILLIAMS INEQUALITIES [J].
MCELIECE, RJ ;
RODEMICH, ER ;
RUMSEY, H ;
WELCH, LR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1977, 23 (02) :157-166