Radiomics and Radiogenomics with Deep Learning in Neuro-oncology

被引:1
作者
Patel, Jay [1 ,2 ]
Gidwani, Mishka [1 ]
Chang, Ken [1 ,2 ]
Kalpathy-Cramer, Jayashree [1 ]
机构
[1] Massachusetts Gen Hosp, Dept Radiol, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02114 USA
[2] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020 | 2020年 / 12449卷
关键词
Radiomics; Deep learning; Neuro-oncology; HEALTH-ORGANIZATION CLASSIFICATION; CONVOLUTIONAL NEURAL-NETWORK; CENTRAL-NERVOUS-SYSTEM; GLIOBLASTOMA PATIENTS; GRADE GLIOMAS; MR-IMAGES; SURVIVAL; MUTATIONS; SIGNATURE; TUMORS;
D O I
10.1007/978-3-030-66843-3_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The clinical utility of predictive and/or prognostic machine learning models using routinely acquired imaging has resulted in a surge of radiomics and radiogenomics research. Using these methods, large numbers of quantitative imaging features can be extracted in a high-throughput manner, with subsequent feature selection strategies used to systematically find a subset with high predictive power toward a specific task (e.g. survival prediction). While these approaches have traditionally relied upon the use of handcrafted imaging features, automatic feature learning via convolutional neural networks has become increasingly common due to the recent success of deep learning based methods in imagerelated tasks. In this review, we first present an overview of both the traditional and newer deep learning based radiomics methodologies. Further, we highlight some recent applications of these methods to neuro-oncology.
引用
收藏
页码:199 / 211
页数:13
相关论文
共 64 条
[1]   Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence [J].
Akkus, Zeynettin ;
Ali, Issa ;
Sedlar, Jiri ;
Agrawal, Jay P. ;
Parney, Ian F. ;
Giannini, Caterina ;
Erickson, Bradley J. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (04) :469-476
[2]   Assessment of Glioblastoma Response in the Era of Bevacizumab: Longstanding and Emergent Challenges in the Imaging Evaluation of Pseudoresponse [J].
Arevalo, Octavio D. ;
Soto, Carolina ;
Rabiei, Pejman ;
Kamali, Arash ;
Ballester, Leomar Y. ;
Esquenazi, Yoshua ;
Zhu, Jay-Jiguang ;
Riascos, Roy Francisco .
FRONTIERS IN NEUROLOGY, 2019, 10
[3]   Improved tumor oxygenation and survival in glioblastoma patients who show increased blood perfusion after cediranib and chemoradiation [J].
Batchelor, Tracy T. ;
Gerstner, Elizabeth R. ;
Emblem, Kyrre E. ;
Duda, Dan G. ;
Kalpathy-Cramer, Jayashree ;
Snuderl, Matija ;
Ancukiewicz, Marek ;
Polaskova, Pavlina ;
Pinho, Marco C. ;
Jennings, Dominique ;
Plotkin, Scott R. ;
Chi, Andrew S. ;
Eichler, April F. ;
Dietrich, Jorg ;
Hochberg, Fred H. ;
Lu-Emerson, Christine ;
Iafrate, A. John ;
Ivy, S. Percy ;
Rosen, Bruce R. ;
Loeffler, Jay S. ;
Wen, Patrick Y. ;
Sorensen, A. Greg ;
Jain, Rakesh K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (47) :19059-19064
[4]   DeepNeuro: an open-source deep learning toolbox for neuroimaging [J].
Beers, Andrew ;
Brown, James ;
Chang, Ken ;
Hoebel, Katharina ;
Patel, Jay ;
Ly, K. Ina ;
Tolaney, Sara M. ;
Brastianos, Priscilla ;
Rosen, Bruce ;
Gerstner, Elizabeth R. ;
Kalpathy-Cramer, Jayashree .
NEUROINFORMATICS, 2021, 19 (01) :127-140
[5]   Radiogenomic analysis of hypoxia pathway is predictive of overall survival in Glioblastoma [J].
Beig, Niha ;
Patel, Jay ;
Prasanna, Prateek ;
Hill, Virginia ;
Gupta, Amit ;
Correa, Ramon ;
Bera, Kaustav ;
Singh, Salendra ;
Partovi, Sasan ;
Varadan, Vinay ;
Ahluwalia, Manmeet ;
Madabhushi, Anant ;
Tiwari, Pallavi .
SCIENTIFIC REPORTS, 2018, 8
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Prediction of survival with multi-scale radiomic analysis in glioblastoma patients [J].
Chaddad, Ahmad ;
Sabri, Siham ;
Niazi, Tamim ;
Abdulkarim, Bassam .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2018, 56 (12) :2287-2300
[8]   Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement [J].
Chang, Ken ;
Beers, Andrew L. ;
Bai, Harrison X. ;
Brown, James M. ;
Ly, K. Ina ;
Li, Xuejun ;
Senders, Joeky T. ;
Kavouridis, Vasileios K. ;
Boaro, Alessandro ;
Su, Chang ;
Bi, Wenya Linda ;
Rapalino, Otto ;
Liao, Weihua ;
Shen, Qin ;
Zhou, Hao ;
Xiao, Bo ;
Wang, Yinyan ;
Zhang, Paul J. ;
Pinho, Marco C. ;
Wen, Patrick Y. ;
Batchelor, Tracy T. ;
Boxerman, Jerrold L. ;
Arnaout, Omar ;
Rosen, Bruce R. ;
Gerstner, Elizabeth R. ;
Yang, Li ;
Huang, Raymond Y. ;
Kalpathy-Cramer, Jayashree .
NEURO-ONCOLOGY, 2019, 21 (11) :1412-1422
[9]   Residual Convolutional Neural Network for the Determination of IDH Status in Low- and High-Grade Gliomas from MR Imaging [J].
Chang, Ken ;
Bai, Harrison X. ;
Zhou, Hao ;
Su, Chang ;
Bi, Wenya Linda ;
Agbodza, Ena ;
Kavouridis, Vasileios K. ;
Senders, Joeky T. ;
Boaro, Alessandro ;
Beers, Andrew ;
Zhang, Biqi ;
Capellini, Alexandra ;
Liao, Weihua ;
Shen, Qin ;
Li, Xuejun ;
Xiao, Bo ;
Cryan, Jane ;
Ramkissoon, Shakti ;
Ramkissoon, Lori ;
Ligon, Keith ;
Wen, Patrick Y. ;
Bindra, Ranjit S. ;
Woo, John ;
Arnaout, Omar ;
Gerstner, Elizabeth R. ;
Zhang, Paul J. ;
Rosen, Bruce R. ;
Yang, Li ;
Huang, Raymond Y. ;
Kalpathy-Cramer, Jayashree .
CLINICAL CANCER RESEARCH, 2018, 24 (05) :1073-1081
[10]   Multimodal imaging patterns predict survival in recurrent glioblastoma patients treated with bevacizumab [J].
Chang, Ken ;
Zhang, Biqi ;
Guo, Xiaotao ;
Zong, Min ;
Rahman, Rifaquat ;
Sanchez, David ;
Winder, Nicolette ;
Reardon, David A. ;
Zhao, Binsheng ;
Wen, Patrick Y. ;
Huang, Raymond Y. .
NEURO-ONCOLOGY, 2016, 18 (12) :1680-1687