Deterministic Distributed Sparse and Ultra-Sparse Spanners and Connectivity Certificates

被引:3
作者
Bezdrighin, Marcel [1 ]
Elkin, Michael [2 ]
Ghaffari, Mohsen [1 ]
Grunau, Christoph [1 ]
Haeupler, Bernhard [1 ,3 ]
Ilchi, Saeed [1 ]
Rozhon, Vaclav [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] Ben Gurion Univ Negev, Beer Sheva, Israel
[3] Carnegie Mellon Univ, Pittsburgh, PA USA
来源
PROCEEDINGS OF THE 34TH ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, SPAA 2022 | 2022年
基金
欧洲研究理事会;
关键词
Distributed Computing; Spanners; Ultra-Sparse Spanners; LowDiameter Clustering; Connectivity Certificates; DECOMPOSITION; CONSTRUCTIONS; ALGORITHM; DIAMETER;
D O I
10.1145/3490148.3538565
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents efficient distributed algorithms for a number of fundamental problems in the area of graph sparsification: circle We provide the first deterministic distributed algorithm that computes an ultra-sparse spanner in polylog(n) rounds in weighted graphs. Concretely, our algorithm outputs a spanning subgraph with only n +o (n) edges in which the pairwise distances are stretched by a factor of at most O ( log n center dot 2(O (log*n))). circle We provide a polylog(n)-round deterministic distributed algorithm that computes a spanner with stretch (2k - 1) and O (nk +n(1+1/k) logk) edges in unweighted graphs and with O(n(1+1/k)k) edges in weighted graphs. circle We present the first polylog(n) round randomized distributed algorithm that computes a sparse connectivity certificate. For an n-node graph G, a certificate for connectivity kappa is a spanning subgraph H that is kappa-edge-connected if and only if G is kappa-edge-connected, and this subgraph.. is called sparse if it has O(nk) edges. Our algorithm achieves a sparsity of (1 +o (1))nk edges, which is within a 2(1 +o(1)) factor of the best possible.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 55 条
  • [1] The 4/3 Additive Spanner Exponent Is Tight
    Abboud, Amir
    Bodwin, Greg
    [J]. JOURNAL OF THE ACM, 2017, 64 (04)
  • [2] Graph spanners: A tutorial review
    Ahmed, Reyan
    Bodwin, Greg
    Sahneh, Faryad Darabi
    Hamm, Keaton
    Jebelli, Mohammad Javad Latifi
    Kobourov, Stephen
    Spence, Richard
    [J]. COMPUTER SCIENCE REVIEW, 2020, 37
  • [3] Fast estimation of diameter and shortest paths (without matrix multiplication)
    Aingworth, D
    Chekuri, C
    Indyk, P
    Motwani, R
    [J]. SIAM JOURNAL ON COMPUTING, 1999, 28 (04) : 1167 - 1181
  • [4] ON SPARSE SPANNERS OF WEIGHTED GRAPHS
    ALTHOFER, I
    DAS, G
    DOBKIN, D
    JOSEPH, D
    SOARES, J
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 9 (01) : 81 - 100
  • [5] [Anonymous], 2016, P ACM SIAM S DISCRET, DOI DOI 10.1137/1
  • [6] ROUTING WITH POLYNOMIAL COMMUNICATION-SPACE TRADE-OFF
    AWERBUCH, B
    PELEG, D
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (02) : 151 - 162
  • [7] AWERBUCH B, 1993, AN S FDN CO, P638
  • [8] A fast network-decomposition algorithm and its applications to constant-time distributed computation
    Barenboim, Leonid
    Elkin, Michael
    Gavoille, Cyril
    [J]. THEORETICAL COMPUTER SCIENCE, 2018, 751 : 2 - 23
  • [9] A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs
    Baswana, Surender
    Sen, Sandeep
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (04) : 532 - 563
  • [10] Additive Spanners and (α, β)-Spanners
    Baswana, Surender
    Kavitha, Telikepalli
    Mehlhorn, Kurt
    Pettie, Seth
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2010, 7 (01)