Deterministic Distributed Sparse and Ultra-Sparse Spanners and Connectivity Certificates

被引:3
作者
Bezdrighin, Marcel [1 ]
Elkin, Michael [2 ]
Ghaffari, Mohsen [1 ]
Grunau, Christoph [1 ]
Haeupler, Bernhard [1 ,3 ]
Ilchi, Saeed [1 ]
Rozhon, Vaclav [1 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] Ben Gurion Univ Negev, Beer Sheva, Israel
[3] Carnegie Mellon Univ, Pittsburgh, PA USA
来源
PROCEEDINGS OF THE 34TH ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, SPAA 2022 | 2022年
基金
欧洲研究理事会;
关键词
Distributed Computing; Spanners; Ultra-Sparse Spanners; LowDiameter Clustering; Connectivity Certificates; DECOMPOSITION; CONSTRUCTIONS; ALGORITHM; DIAMETER;
D O I
10.1145/3490148.3538565
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents efficient distributed algorithms for a number of fundamental problems in the area of graph sparsification: circle We provide the first deterministic distributed algorithm that computes an ultra-sparse spanner in polylog(n) rounds in weighted graphs. Concretely, our algorithm outputs a spanning subgraph with only n +o (n) edges in which the pairwise distances are stretched by a factor of at most O ( log n center dot 2(O (log*n))). circle We provide a polylog(n)-round deterministic distributed algorithm that computes a spanner with stretch (2k - 1) and O (nk +n(1+1/k) logk) edges in unweighted graphs and with O(n(1+1/k)k) edges in weighted graphs. circle We present the first polylog(n) round randomized distributed algorithm that computes a sparse connectivity certificate. For an n-node graph G, a certificate for connectivity kappa is a spanning subgraph H that is kappa-edge-connected if and only if G is kappa-edge-connected, and this subgraph.. is called sparse if it has O(nk) edges. Our algorithm achieves a sparsity of (1 +o (1))nk edges, which is within a 2(1 +o(1)) factor of the best possible.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 55 条
[1]   The 4/3 Additive Spanner Exponent Is Tight [J].
Abboud, Amir ;
Bodwin, Greg .
JOURNAL OF THE ACM, 2017, 64 (04)
[2]   Graph spanners: A tutorial review [J].
Ahmed, Reyan ;
Bodwin, Greg ;
Sahneh, Faryad Darabi ;
Hamm, Keaton ;
Jebelli, Mohammad Javad Latifi ;
Kobourov, Stephen ;
Spence, Richard .
COMPUTER SCIENCE REVIEW, 2020, 37
[3]   Fast estimation of diameter and shortest paths (without matrix multiplication) [J].
Aingworth, D ;
Chekuri, C ;
Indyk, P ;
Motwani, R .
SIAM JOURNAL ON COMPUTING, 1999, 28 (04) :1167-1181
[4]   ON SPARSE SPANNERS OF WEIGHTED GRAPHS [J].
ALTHOFER, I ;
DAS, G ;
DOBKIN, D ;
JOSEPH, D ;
SOARES, J .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 9 (01) :81-100
[5]  
[Anonymous], 2016, P 27 ANN ACM SIAM S
[6]   ROUTING WITH POLYNOMIAL COMMUNICATION-SPACE TRADE-OFF [J].
AWERBUCH, B ;
PELEG, D .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (02) :151-162
[7]  
AWERBUCH B, 1993, AN S FDN CO, P638
[8]   A fast network-decomposition algorithm and its applications to constant-time distributed computation [J].
Barenboim, Leonid ;
Elkin, Michael ;
Gavoille, Cyril .
THEORETICAL COMPUTER SCIENCE, 2018, 751 :2-23
[9]   A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs [J].
Baswana, Surender ;
Sen, Sandeep .
RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (04) :532-563
[10]   Additive Spanners and (α, β)-Spanners [J].
Baswana, Surender ;
Kavitha, Telikepalli ;
Mehlhorn, Kurt ;
Pettie, Seth .
ACM TRANSACTIONS ON ALGORITHMS, 2010, 7 (01)