Macroscopic evolution of particle systems with random field Kac interactions

被引:1
|
作者
Mourragui, M [1 ]
Orlandi, E
Saada, E
机构
[1] Univ Rouen, LMRS, UMR 6085, F-76821 Mont St Aignan, France
[2] Univ Roma Tre, Dipartimento Matemat, I-00156 Rome, Italy
[3] Univ Rouen, CNRS, LMRS, UMR 6085, F-76821 Mont St Aignan, France
关键词
D O I
10.1088/0951-7715/16/6/315
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a lattice gas interacting via a Kac interaction J(gamma)(\x - y\) of range gamma(-1), gamma > 0, x, y is an element of Z(d) and under the influence of an external random field given by independent bounded random variables with a translation invariant distribution. We study the evolution of the system through a conservative dynamics, i.e. particles jump to nearest neighbour empty sites, with rates satisfying a detailed balance condition with respect to the equilibrium measure. We prove that rescaling space as gamma(-1) and time as gamma(-2), in the limit gamma --> 0, for dimension d greater than or equal to 3, the macroscopic density profile rho satisfies, a.s. with respect to the random field, a nonlinear integral differential equation, with a diffusion matrix determined by the statistical properties of the external random field. The result holds for all values of the density, also in the presence of phase segregation, and the equation is in the form of the flux gradient for the energy functional.
引用
收藏
页码:2123 / 2147
页数:25
相关论文
共 50 条
  • [21] Typical configurations for one-dimensional random field Kac model
    Cassandro, M
    Orlandi, E
    Picco, P
    ANNALS OF PROBABILITY, 1999, 27 (03): : 1414 - 1467
  • [22] Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level
    Colli-Franzone, P
    Savaré, G
    EVOLUTION EQUATIONS, SEMIGROUPS AND FUNCTIONAL ANALYSIS: IN MEMORY OF BRUNELLO TERRENI, 2002, 50 : 49 - 78
  • [23] Particle dynamics in fluids with random interactions
    Shagolsem, Lenin S.
    Rabin, Yitzhak
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (19):
  • [24] Macroscopic emulation of microscopic magnetic particle systems
    Spulis, Viesturs
    Gorovojs, Daniels
    Pudans, Jaenis
    Lopatko, Rolands
    Stikuts, Andris P.
    Brics, Martins
    Kitenbergs, Guntars
    Cimurs, Jaenis
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 590
  • [25] PARTICLE PARTICLE INTERACTIONS IN AQUATIC SYSTEMS
    OMELIA, CR
    COLLOIDS AND SURFACES, 1989, 39 (1-3): : 255 - 271
  • [26] From microscopic interactions to macroscopic laws of cluster evolution
    Katsoulakis, MA
    Vlachos, DG
    PHYSICAL REVIEW LETTERS, 2000, 84 (07) : 1511 - 1514
  • [27] Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits
    Giambattista Giacomin
    Joel L. Lebowitz
    Journal of Statistical Physics, 1997, 87 : 37 - 61
  • [28] CONDITIONED RANDOM WALKS FROM KAC-MOODY ROOT SYSTEMS
    Lecouvey, Cedric
    Lesigne, Emmanuel
    Peigne, Marc
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (05) : 3177 - 3210
  • [29] Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions
    J. Barré
    J. A. Carrillo
    P. Degond
    D. Peurichard
    E. Zatorska
    Journal of Nonlinear Science, 2018, 28 : 235 - 268
  • [30] Particle Interactions Mediated by Dynamical Networks: Assessment of Macroscopic Descriptions
    Barre, J.
    Carrillo, J. A.
    Degond, P.
    Peurichard, D.
    Zatorska, E.
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (01) : 235 - 268