Macroscopic evolution of particle systems with random field Kac interactions

被引:1
|
作者
Mourragui, M [1 ]
Orlandi, E
Saada, E
机构
[1] Univ Rouen, LMRS, UMR 6085, F-76821 Mont St Aignan, France
[2] Univ Roma Tre, Dipartimento Matemat, I-00156 Rome, Italy
[3] Univ Rouen, CNRS, LMRS, UMR 6085, F-76821 Mont St Aignan, France
关键词
D O I
10.1088/0951-7715/16/6/315
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a lattice gas interacting via a Kac interaction J(gamma)(\x - y\) of range gamma(-1), gamma > 0, x, y is an element of Z(d) and under the influence of an external random field given by independent bounded random variables with a translation invariant distribution. We study the evolution of the system through a conservative dynamics, i.e. particles jump to nearest neighbour empty sites, with rates satisfying a detailed balance condition with respect to the equilibrium measure. We prove that rescaling space as gamma(-1) and time as gamma(-2), in the limit gamma --> 0, for dimension d greater than or equal to 3, the macroscopic density profile rho satisfies, a.s. with respect to the random field, a nonlinear integral differential equation, with a diffusion matrix determined by the statistical properties of the external random field. The result holds for all values of the density, also in the presence of phase segregation, and the equation is in the form of the flux gradient for the energy functional.
引用
收藏
页码:2123 / 2147
页数:25
相关论文
共 50 条
  • [1] Large deviations from a macroscopic scaling limit for particle systems with Kac interaction and random potential
    Mourragui, Mustapha
    Orlandi, Enza
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (06): : 677 - 715
  • [2] Macroscopic evolution of particle systems with short- and long-range interactions
    Giacomin, G
    Lebowitz, JL
    Marra, R
    NONLINEARITY, 2000, 13 (06) : 2143 - 2162
  • [3] MACROSCOPIC FRACTURE CHARACTERISTICS OF RANDOM PARTICLE-SYSTEMS
    JIRASEK, M
    BAZANT, ZP
    INTERNATIONAL JOURNAL OF FRACTURE, 1994, 69 (03) : 201 - 228
  • [4] Quenched Large Deviations for Glauber Evolution with Kac Interaction and Random Field
    Benois, O.
    Mourragui, M.
    Orlandi, E.
    Saada, E.
    Triolo, L.
    MARKOV PROCESSES AND RELATED FIELDS, 2012, 18 (02) : 215 - 268
  • [5] RANDOM TIME EVOLUTION OF INFINITE PARTICLE SYSTEMS
    SPITZER, F
    ADVANCES IN MATHEMATICS, 1975, 16 (02) : 139 - 143
  • [6] MACROSCOPIC CONSEQUENCES OF POLYMER PARTICLE INTERACTIONS
    RUSSEL, WB
    ACS SYMPOSIUM SERIES, 1993, 532 : 1 - 13
  • [7] A RANDOM BATCH EWALD METHOD FOR PARTICLE SYSTEMS WITH COULOMB INTERACTIONS
    Jin, Shi
    Li, Lei
    Xu, Zhenli
    Zhao, Yue
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (04): : B937 - B960
  • [8] ON THE TIME EVOLUTION OF MACROSCOPIC SYSTEMS
    LEBOWITZ, JL
    SPOHN, H
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (05) : 595 - 613
  • [9] GENERALIZATION OF EQUATIONS GOVERNING EVOLUTION OF A PARTICLE DISTRIBUTION IN A RANDOM FORCE FIELD
    NEWMAN, CE
    JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (04) : 502 - 508
  • [10] QUANTITATIVE PROPAGATION OF CHAOS FOR GENERALIZED KAC PARTICLE SYSTEMS
    Cortez, Roberto
    Fontbona, Joaquin
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (02): : 892 - 916