A dual-population paradigm for evolutionary multiobjective optimization
被引:44
作者:
Li, Ke
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USACity Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
Li, Ke
[1
,2
]
Kwong, Sam
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
Kwong, Sam
[1
]
Deb, Kalyanmoy
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USACity Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
Deb, Kalyanmoy
[2
]
机构:
[1] City Univ Hong Kong, Dept Comp Sci, Kowloon, Hong Kong, Peoples R China
[2] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
Convergence and diversity are two basic issues in evolutionary multiobjective optimization (EMO). However, it is far from trivial to address them simultaneously, especially when tackling problems with complicated Pareto-optimal sets. This paper presents a dual-population paradigm (DPP) that uses two separate and co-evolving populations to deal with convergence and diversity simultaneously. These two populations are respectively maintained by Pareto- and decomposition-based techniques, which arguably have complementary effects in selection. In particular, the so called Pareto-based archive is assumed to maintain a population with competitive selection pressure towards the Pareto-optimal front, while the so called decomposition-based archive is assumed to preserve a population with satisfied diversity in the objective space. In addition, we develop a restricted mating selection mechanism to coordinate the interaction between these two populations. DPP paves an avenue to integrate Pareto- and decomposition-based techniques in a single paradigm. A series of comprehensive experiments is conducted on seventeen benchmark problems with distinct characteristics and complicated Pareto-optimal sets. Empirical results fully demonstrate the effectiveness and competitiveness of the proposed algorithm. (C) 2015 Elsevier Inc. All rights reserved.
机构:
LRI Paris Sud Univ, TAO Team INRIA Saclay Ile de France, F-91405 Orsay, FranceLRI Paris Sud Univ, TAO Team INRIA Saclay Ile de France, F-91405 Orsay, France
Auger, Anne
Bader, Johannes
论文数: 0引用数: 0
h-index: 0
机构:
ETH, Comp Engn & Networks Lab, CH-8092 Zurich, SwitzerlandLRI Paris Sud Univ, TAO Team INRIA Saclay Ile de France, F-91405 Orsay, France
Bader, Johannes
Brockhoff, Dimo
论文数: 0引用数: 0
h-index: 0
机构:
LRI Paris Sud Univ, TAO Team INRIA Saclay Ile de France, F-91405 Orsay, FranceLRI Paris Sud Univ, TAO Team INRIA Saclay Ile de France, F-91405 Orsay, France
Brockhoff, Dimo
Zitzler, Eckart
论文数: 0引用数: 0
h-index: 0
机构:
ETH, Comp Engn & Networks Lab, CH-8092 Zurich, SwitzerlandLRI Paris Sud Univ, TAO Team INRIA Saclay Ile de France, F-91405 Orsay, France
机构:
LRI Paris Sud Univ, TAO Team INRIA Saclay Ile de France, F-91405 Orsay, FranceLRI Paris Sud Univ, TAO Team INRIA Saclay Ile de France, F-91405 Orsay, France
Auger, Anne
Bader, Johannes
论文数: 0引用数: 0
h-index: 0
机构:
ETH, Comp Engn & Networks Lab, CH-8092 Zurich, SwitzerlandLRI Paris Sud Univ, TAO Team INRIA Saclay Ile de France, F-91405 Orsay, France
Bader, Johannes
Brockhoff, Dimo
论文数: 0引用数: 0
h-index: 0
机构:
LRI Paris Sud Univ, TAO Team INRIA Saclay Ile de France, F-91405 Orsay, FranceLRI Paris Sud Univ, TAO Team INRIA Saclay Ile de France, F-91405 Orsay, France
Brockhoff, Dimo
Zitzler, Eckart
论文数: 0引用数: 0
h-index: 0
机构:
ETH, Comp Engn & Networks Lab, CH-8092 Zurich, SwitzerlandLRI Paris Sud Univ, TAO Team INRIA Saclay Ile de France, F-91405 Orsay, France