Nanomaterials for cancer therapy and imaging

被引:230
作者
Bae, Ki Hyun
Chung, Hyun Jung
Park, Tae Gwan [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Biol Sci, Taejon 305701, South Korea
关键词
cancer therapy; drug delivery system; imaging; nanoparticles; small interfering RNA; VASCULAR-PERMEABILITY FACTOR; ENDOTHELIAL GROWTH-FACTOR; DRUG-DELIVERY; INTRACELLULAR DELIVERY; MAGNETIC NANOPARTICLES; OXIDE NANOPARTICLES; SIRNA DELIVERY; QUANTUM DOTS; VEGF SIRNA; NANOTECHNOLOGY;
D O I
10.1007/s10059-011-0051-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A variety of organic and inorganic nanomaterials with dimensions below several hundred nanometers are recently emerging as promising tools for cancer therapeutic and diagnostic applications due to their unique characteristics of passive tumor targeting. A wide range of nanomedicine platforms such as polymeric micelles, liposomes, dendrimers, and polymeric nanoparticles have been extensively explored for targeted delivery of anti-cancer agents, because they can accumulate in the solid tumor site via leaky tumor vascular structures, thereby selectively delivering therapeutic payloads into the desired tumor tissue. In recent years, nanoscale delivery vehicles for small interfering RNA (siRNA) have been also developed as effective therapeutic approaches to treat cancer. Furthermore, rationally designed multi-functional surface modification of these nanomaterials with cancer targeting moieties, protective polymers, and imaging agents can lead to fabrication versatile theragnostic nanosystems that allow simultaneous cancer therapy and diagnosis. This review highlights the current state and future prospects of diverse biomedical nanomaterials for cancer therapy and imaging.
引用
收藏
页码:295 / 302
页数:8
相关论文
共 95 条
[1]   Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis [J].
Akinc, A ;
Thomas, M ;
Klibanov, AM ;
Langer, R .
JOURNAL OF GENE MEDICINE, 2005, 7 (05) :657-663
[2]   Drug delivery systems: Entering the mainstream [J].
Allen, TM ;
Cullis, PR .
SCIENCE, 2004, 303 (5665) :1818-1822
[3]   Oil-encapsulating PEO-PPO-PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel [J].
Bae, Ki Hyun ;
Lee, Yuhan ;
Park, Tae Gwan .
BIOMACROMOLECULES, 2007, 8 (02) :650-656
[4]   Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging [J].
Bae, Ki Hyun ;
Lee, Kyuri ;
Kim, Chunsoo ;
Park, Tae Gwan .
BIOMATERIALS, 2011, 32 (01) :176-184
[5]   Physicochemical and biological characterization of targeted, nucleic acid-containing nanoparticles [J].
Bartlett, Derek W. ;
Davis, Mark E. .
BIOCONJUGATE CHEMISTRY, 2007, 18 (02) :456-468
[6]   Tumorigenesis and the angiogenic switch [J].
Bergers, G ;
Benjamin, LE .
NATURE REVIEWS CANCER, 2003, 3 (06) :401-410
[7]   Sticky overhangs enhance siRNA-mediated gene silencing [J].
Bolcato-Bellemin, Anne-Laure ;
Bonnet, Marie-Elise ;
Creusatt, Gaeelle ;
Erbacher, Patrick ;
Behr, Jean-Paul .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (41) :16050-16055
[8]   Development of copolymers of poly(D,L-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel [J].
Burt, HM ;
Zhang, XC ;
Toleikis, P ;
Embree, L ;
Hunter, WL .
COLLOIDS AND SURFACES B-BIOINTERFACES, 1999, 16 (1-4) :161-171
[9]  
Campbell Robert B., 2006, Anti-Cancer Agents in Medicinal Chemistry, V6, P503, DOI 10.2174/187152006778699077
[10]   Angiogenesis in cancer and other diseases [J].
Carmeliet, P ;
Jain, RK .
NATURE, 2000, 407 (6801) :249-257