Binary Signature Set with Optimal Odd Periodic Total Squared Correlation

被引:0
作者
Yang, Yang [1 ]
Tang, Xiaohu [2 ]
Zhou, Zhengchun [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Informat Secur & Natl Comp Grid Lab, Chengdu, Sichuan, Peoples R China
来源
2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2015年
关键词
Binary sequences; complementary sequence sets; odd periodic complementary sequence sets; periodic total squared correlation (PTSC); odd periodic total squared correlation (OPTSC); KARYSTINOS-PADOS BOUNDS; OPTIMAL AUTOCORRELATION; SEQUENCES; PERFECT;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we give a lower bound on odd periodic total squared correlation (OPTSC for short) of binary signature sets, which indicates that odd periodic complementary sets and PTSC-optimal signature sets of odd period can be used to design optimal OPTSC signature sets which achieve the new lower bound. Besides, we give three kinds of PTSC-optimal signature sets from ideal sequences and large Kasami subsets.
引用
收藏
页码:1555 / 1559
页数:5
相关论文
共 42 条
[41]   Low-Peak-Factor Pseudo-White-Noise Sequence Set with Optimal Zero-Correlation Zone [J].
Hayashi, Takafumi ;
Maeda, Takao ;
Kanemoto, Shigeru ;
Matsufuji, Shinya .
IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (12) :2343-2351
[42]   The Autocorrelation Magnitude of Balanced Binary Sequence Pairs of Prime Period N ≡ 1(mod 4) With Optimal Cross-Correlation [J].
Yang, Yang ;
Tang, Xiaohu ;
Zhou, Zhengchun .
IEEE COMMUNICATIONS LETTERS, 2015, 19 (04) :585-588