Binary Signature Set with Optimal Odd Periodic Total Squared Correlation

被引:0
作者
Yang, Yang [1 ]
Tang, Xiaohu [2 ]
Zhou, Zhengchun [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Informat Secur & Natl Comp Grid Lab, Chengdu, Sichuan, Peoples R China
来源
2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2015年
关键词
Binary sequences; complementary sequence sets; odd periodic complementary sequence sets; periodic total squared correlation (PTSC); odd periodic total squared correlation (OPTSC); KARYSTINOS-PADOS BOUNDS; OPTIMAL AUTOCORRELATION; SEQUENCES; PERFECT;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we give a lower bound on odd periodic total squared correlation (OPTSC for short) of binary signature sets, which indicates that odd periodic complementary sets and PTSC-optimal signature sets of odd period can be used to design optimal OPTSC signature sets which achieve the new lower bound. Besides, we give three kinds of PTSC-optimal signature sets from ideal sequences and large Kasami subsets.
引用
收藏
页码:1555 / 1559
页数:5
相关论文
共 42 条
  • [1] New Bounds and Optimal Binary Signature Sets-Part I: Periodic Total Squared Correlation
    Ganapathy, Harish
    Pados, Dimitris A.
    Karystinos, George N.
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (04) : 1123 - 1132
  • [2] Constructions of Binary Signature Sets With Optimal Odd Total Squared Correlation and Their Application to Device Activity Detection
    Liu, Bing
    Zhou, Zhengchun
    Yang, Yang
    Adhikary, Avik Ranjan
    Fan, Pingzhi
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) : 2084 - 2096
  • [3] New Bounds and Optimal Binary Signature Sets-Part II: Aperiodic Total Squared Correlation
    Ganapathy, Harish
    Pados, Dimitris A.
    Karystinos, George N.
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (05) : 1411 - 1420
  • [4] The maximum squared correlation, sum capacity, and total asymptotic efficiency of minimum, total-squared-correlation binary signature sets
    Karystinos, GN
    Pados, DA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) : 348 - 355
  • [5] New Bounds on the Total-Squared-Correlation of Quaternary Signature Sets and Optimal Designs
    Li, Ming
    Batalama, Stella N.
    Pados, Dimitris A.
    Matyjas, John D.
    [J]. GLOBECOM 2009 - 2009 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-8, 2009, : 6328 - +
  • [6] Binary Sequences with Optimal Odd Periodic Autocorrelation
    Yang, Yang
    Tang, Xiaohu
    Zhou, Zhengchun
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1551 - 1554
  • [7] Minimum Total-Squared-Correlation Quaternary Signature Sets: New Bounds and Optimal Designs
    Li, Ming
    Batalama, Stella N.
    Pados, Dimitris A.
    Matyjas, John D.
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (12) : 3662 - 3671
  • [8] Code division multiplexing performance of minimum total-squared-correlation binary signature sets
    Karystinos, GN
    Pados, DA
    [J]. GLOBECOM'03: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-7, 2003, : 1862 - 1866
  • [9] New bounds on the total squared correlation and optimum design of DS-CDMA binary signature sets
    Karystinos, GN
    Pados, DA
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2003, 51 (01) : 48 - 51
  • [10] Generic Construction of Binary Sequences of Period 2N With Optimal Odd Correlation Magnitude Based on Quaternary Sequences of Odd Period N
    Yang, Yang
    Tang, Xiaohu
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (01) : 384 - 392