Binary Signature Set with Optimal Odd Periodic Total Squared Correlation

被引:0
|
作者
Yang, Yang [1 ]
Tang, Xiaohu [2 ]
Zhou, Zhengchun [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Math, Chengdu, Sichuan, Peoples R China
[2] Southwest Jiaotong Univ, Informat Secur & Natl Comp Grid Lab, Chengdu, Sichuan, Peoples R China
来源
2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT) | 2015年
关键词
Binary sequences; complementary sequence sets; odd periodic complementary sequence sets; periodic total squared correlation (PTSC); odd periodic total squared correlation (OPTSC); KARYSTINOS-PADOS BOUNDS; OPTIMAL AUTOCORRELATION; SEQUENCES; PERFECT;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we give a lower bound on odd periodic total squared correlation (OPTSC for short) of binary signature sets, which indicates that odd periodic complementary sets and PTSC-optimal signature sets of odd period can be used to design optimal OPTSC signature sets which achieve the new lower bound. Besides, we give three kinds of PTSC-optimal signature sets from ideal sequences and large Kasami subsets.
引用
收藏
页码:1555 / 1559
页数:5
相关论文
共 42 条
  • [1] New Bounds and Optimal Binary Signature Sets-Part I: Periodic Total Squared Correlation
    Ganapathy, Harish
    Pados, Dimitris A.
    Karystinos, George N.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (04) : 1123 - 1132
  • [2] Constructions of Binary Signature Sets With Optimal Odd Total Squared Correlation and Their Application to Device Activity Detection
    Liu, Bing
    Zhou, Zhengchun
    Yang, Yang
    Adhikary, Avik Ranjan
    Fan, Pingzhi
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) : 2084 - 2096
  • [3] New Bounds and Optimal Binary Signature Sets-Part II: Aperiodic Total Squared Correlation
    Ganapathy, Harish
    Pados, Dimitris A.
    Karystinos, George N.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2011, 59 (05) : 1411 - 1420
  • [4] The maximum squared correlation, sum capacity, and total asymptotic efficiency of minimum, total-squared-correlation binary signature sets
    Karystinos, GN
    Pados, DA
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (01) : 348 - 355
  • [5] New Bounds on the Total-Squared-Correlation of Quaternary Signature Sets and Optimal Designs
    Li, Ming
    Batalama, Stella N.
    Pados, Dimitris A.
    Matyjas, John D.
    GLOBECOM 2009 - 2009 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-8, 2009, : 6328 - +
  • [6] Binary Sequences with Optimal Odd Periodic Autocorrelation
    Yang, Yang
    Tang, Xiaohu
    Zhou, Zhengchun
    2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 1551 - 1554
  • [7] Minimum Total-Squared-Correlation Quaternary Signature Sets: New Bounds and Optimal Designs
    Li, Ming
    Batalama, Stella N.
    Pados, Dimitris A.
    Matyjas, John D.
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2009, 57 (12) : 3662 - 3671
  • [8] Code division multiplexing performance of minimum total-squared-correlation binary signature sets
    Karystinos, GN
    Pados, DA
    GLOBECOM'03: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-7, 2003, : 1862 - 1866
  • [9] New bounds on the total squared correlation and optimum design of DS-CDMA binary signature sets
    Karystinos, GN
    Pados, DA
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2003, 51 (01) : 48 - 51
  • [10] Generic Construction of Binary Sequences of Period 2N With Optimal Odd Correlation Magnitude Based on Quaternary Sequences of Odd Period N
    Yang, Yang
    Tang, Xiaohu
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (01) : 384 - 392