Long-term nitrogen addition affects the phylogenetic turnover of soil microbial community responding to moisture pulse

被引:42
|
作者
Liu, Chi [1 ,2 ]
Yao, Minjie [1 ,2 ]
Stegen, James C. [3 ]
Rui, Junpeng [1 ,2 ]
Li, Jiabao [1 ,2 ]
Li, Xiangzhen [4 ]
机构
[1] Chinese Acad Sci, Key Lab Environm & Appl Microbiol, Chengdu 610041, Sichuan, Peoples R China
[2] Chinese Acad Sci, Chengdu Inst Biol, Environm Microbiol Key Lab Sichuan Prov, Chengdu 610041, Sichuan, Peoples R China
[3] Pacific Northwest Natl Lab, Biol Sci Div, Earth & Biol Sci Directorate, Richland, WA 99352 USA
[4] Fujian Agr & Forestry Univ, Coll Resources & Environm, Fujian Prov Key Lab Soil Environm Hlth & Regulat, Fuzhou 350002, Fujian, Peoples R China
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
中国国家自然科学基金;
关键词
BETA-DIVERSITY; NICHE CONSERVATISM; ASSEMBLY PROCESSES; CARBON-DIOXIDE; BACTERIAL; PATTERNS; BIODIVERSITY; RESPONSES; DYNAMICS; CONTINGENCY;
D O I
10.1038/s41598-017-17736-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
How press disturbance (long-term) influences the phylogenetic turnover of soil microbial communities responding to pulse disturbances (short-term) is not fully known. Understanding the complex connections between the history of environmental conditions, assembly processes and microbial community dynamics is necessary to predict microbial response to perturbation. We started by investigating phylogenetic spatial turnover (based on DNA) of soil prokaryotic communities after long-term nitrogen (N) deposition and temporal turnover (based on RNA) of communities responding to pulse by conducting short-term rewetting experiments. The results showed that moderate N addition increased ecological stochasticity and phylogenetic diversity. In contrast, high N addition slightly increased homogeneous selection and decreased phylogenetic diversity. Examining the system with higher phylogenetic resolution revealed a moderate contribution of variable selection across the whole N gradient. The moisture pulse experiment showed that high N soils had higher rates of phylogenetic turnover across short phylogenetic distances and significant changes in community compositions through time. Long-term N input history influenced spatial turnover of microbial communities, but the dominant community assembly mechanisms differed across different N deposition gradients. We further revealed an interaction between press and pulse disturbances whereby deterministic processes were particularly important following pulse disturbances in high N soils.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide
    Xu, Chonghua
    Xu, Xia
    Ju, Chenghui
    Chen, Han Y. H.
    Wilsey, Brian J.
    Luo, Yiqi
    Fan, Wei
    GLOBAL CHANGE BIOLOGY, 2021, 27 (06) : 1170 - 1180
  • [22] Long-term N addition accelerated organic carbon mineralization in aggregates by shifting microbial community composition
    Zhang, Yu
    Shangguan, Zhouping
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2023, 342
  • [23] Microbial community composition affects soil organic carbon turnover in mineral soils
    Axel Don
    Isabelle H. Böhme
    Anja B. Dohrmann
    Christopher Poeplau
    Christoph C. Tebbe
    Biology and Fertility of Soils, 2017, 53 : 445 - 456
  • [24] Microbial community composition affects soil organic carbon turnover in mineral soils
    Don, Axel
    Boehme, Isabelle H.
    Dohrmann, Anja B.
    Poeplau, Christopher
    Tebbe, Christoph C.
    BIOLOGY AND FERTILITY OF SOILS, 2017, 53 (04) : 445 - 456
  • [25] Long-term nitrogen fertilization, but not short-term tillage reversal, affects bacterial community structure and function in a no-till soil
    Lv, Xiaofei
    Ma, Bin
    Sun, Lei
    Cai, Yanjiang
    Chang, Scott X.
    JOURNAL OF SOILS AND SEDIMENTS, 2022, 22 (02) : 630 - 639
  • [26] Importance of plant community composition and aboveground biomass in shaping microbial communities following long-term nitrogen and phosphorus addition in a temperate steppe ecosystem
    Zhang, Hao
    Jiang, Na
    Wang, Hui
    Zhang, Siyu
    Zhao, Jianning
    Liu, Hongmei
    Zhang, Haifang
    Yang, Dianlin
    PLANT AND SOIL, 2024, : 543 - 560
  • [27] Long-term nitrogen fertilization, but not short-term tillage reversal, affects bacterial community structure and function in a no-till soil
    Xiaofei Lv
    Bin Ma
    Lei Sun
    Yanjiang Cai
    Scott X. Chang
    Journal of Soils and Sediments, 2022, 22 : 630 - 639
  • [28] Long-term ground cover affects soil bacterial community and carbon metabolism in the Loess Plateau, China
    Zhang, Wenting
    Wang, Yi
    Li, Chunyue
    Chang, Shun
    Xue, Yinglong
    Dang, Tinhui
    Zeng, Xiaomin
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2022, 86 (04) : 918 - 931
  • [29] Long-term and legacy effects of manure application on soil microbial community composition
    Zhang, Yuting
    Hao, Xiying
    Alexander, Trevor W.
    Thomas, Ben W.
    Shi, Xiaojun
    Lupwayi, Newton Z.
    BIOLOGY AND FERTILITY OF SOILS, 2018, 54 (02) : 269 - 283
  • [30] Driving mechanisms of soil bacterial α and (3 diversity under long-term nitrogen addition: Subtractive heterogenization based on the environment selection
    Yang, Zhu
    Dai, Handan
    Huang, Yongtao
    Dong, Biao
    Fu, Shenglei
    Zhang, Chenlu
    Li, Xiaowei
    Tan, Yuhua
    Zhang, Xiaoxin
    Zhang, Xiao
    GEODERMA, 2024, 445