Using Vehicles' Rendezvous for In Situ Calibration of Instruments in Fleet Vehicle-Based Air Pollution Mobile Monitoring

被引:14
作者
Xiang, Jianbang [1 ]
Austin, Elena [1 ]
Gould, Timothy [2 ]
Larson, Timothy [1 ,2 ]
Yost, Michael [1 ]
Shirai, Jeffry [1 ]
Liu, Yisi [1 ]
Yun, Sukyong [2 ]
Seto, Edmund [1 ]
机构
[1] Univ Washington, Dept Environm & Occupat Hlth Sci, Seattle, WA 98195 USA
[2] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
关键词
PARTICLE NUMBER CONCENTRATIONS; BOOTSTRAP METHODS; EMISSION FACTORS; AMBIENT AIR; PLATFORM; SENSORS; PERFORMANCE; POLLUTANTS; EXPOSURE; IMPACT;
D O I
10.1021/acs.est.0c00612
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study examines the feasibility of the in situ calibration of instruments for fleet vehicle-based mobile monitoring of ultrafine particles (UFPs) and black carbon (BC) by comparing rendezvous vehicle measurements. Two vehicles with identical makes and models of UFP and BC monitors as well as GPS receivers were sampled within 140 m of each other for 2 h in total during winter in Seattle, Washington. To identify an optimal intervehicle distance for rendezvous calibration, 6 different buffers within 0-140 m for UFP monitors and 5 different buffers within 0-90 m for BC monitors were chosen, and the results of calibration were compared against a reference scenario, which consisted of mobile colocation measurements with both sets of the UFP and BC monitors deployed in one of the vehicles. Results indicate that the optimal distances for rendezvous calibration are 10-80 m for UFP monitors and 0-30 m for BC monitors. In comparison with the mobile colocation calibration, the rendezvous calibration shows a normalized root mean squared deviation of 6-14% and a normalized mean absolute deviation of 4-8% for these monitors. Criteria for applying a rendezvous calibration approach are presented, and an extension of this approach to an instrumented fleet of mobile monitoring vehicles is discussed.
引用
收藏
页码:4286 / 4294
页数:9
相关论文
共 38 条
[1]   High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data [J].
Apte, Joshua S. ;
Messier, Kyle P. ;
Gani, Shahzad ;
Brauer, Michael ;
Kirchstetter, Thomas W. ;
Lunden, Melissa M. ;
Marshall, Julian D. ;
Portier, Christopher J. ;
Vermeulen, Roel C. H. ;
Hamburg, Steven P. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (12) :6999-7008
[2]  
Austin E., 2019, MOBILE OBSERVATIONS
[3]   On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic [J].
Backman, John ;
Schmeisser, Lauren ;
Virkkula, Aki ;
Ogren, John A. ;
Asmi, Eija ;
Starkweather, Sandra ;
Sharma, Sangeeta ;
Eleftheriadis, Konstantinos ;
Uttal, Taneil ;
Jefferson, Anne ;
Bergin, Michael ;
Makshtas, Alexander ;
Tunved, Peter ;
Fiebig, Markus .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2017, 10 (12) :5039-5062
[4]  
Biondi SM, 2017, IEEE CONF WIREL MOB, P272
[5]   Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise [J].
Borrego, C. ;
Costa, A. M. ;
Ginja, J. ;
Amorim, M. ;
Coutinho, M. ;
Karatzas, K. ;
Sioumis, Th. ;
Katsifarakis, N. ;
Konstantinidis, K. ;
De Vito, S. ;
Esposito, E. ;
Smith, P. ;
Andre, N. ;
Gerard, P. ;
Francis, L. A. ;
Castell, N. ;
Schneider, P. ;
Viana, M. ;
Minguillon, M. C. ;
Reimringer, W. ;
Otjes, R. P. ;
von Sicard, O. ;
Pohle, R. ;
Elen, B. ;
Suriano, D. ;
Pfister, V. ;
Prato, M. ;
Dipinto, S. ;
Penza, M. .
ATMOSPHERIC ENVIRONMENT, 2016, 147 :246-263
[6]   Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? [J].
Castell, Nuria ;
Dauge, Franck R. ;
Schneider, Philipp ;
Vogt, Matthias ;
Lerner, Uri ;
Fishbain, Barak ;
Broday, David ;
Bartonova, Alena .
ENVIRONMENT INTERNATIONAL, 2017, 99 :293-302
[7]  
COFFEY ER, 2019, ATMOSPHERE-BASEL, V10, DOI DOI 10.3390/ATMOS10070400
[8]   DETECTION OF INFLUENTIAL OBSERVATION IN LINEAR-REGRESSION [J].
COOK, RD .
TECHNOMETRICS, 1977, 19 (01) :15-18
[9]   Impact of and correction for instrument sensitivity drift on nanoparticle size measurements by single-particle ICP-MS [J].
El Hadri, Hind ;
Petersen, Elijah J. ;
Winchester, Michael R. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2016, 408 (19) :5099-5108
[10]   Development of an in-home, real-time air pollutant sensor platform and implications for community use [J].
Gillooly, Sara E. ;
Zhou, Yulun ;
Vallarino, Jose ;
Chu, MyDzung T. ;
Michanowicz, Drew R. ;
Levy, Jonathan I. ;
Adamkiewicz, Gary .
ENVIRONMENTAL POLLUTION, 2019, 244 :440-450