Increasing the speed of frequency-domain, homodyne thermoreflectance imaging

被引:3
|
作者
Allison, Kyle [1 ]
Hallman, Mark [1 ]
Koskelo, EliseAnne [1 ,2 ]
Hardin, Johanna [2 ]
Radunskaya, Ami [2 ]
Hudgings, Janice [1 ]
机构
[1] Pomona Coll, Dept Phys & Astron, Claremont, CA 91711 USA
[2] Pomona Coll, Dept Math, Claremont, CA 91711 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2020年 / 91卷 / 04期
关键词
RESOLUTION;
D O I
10.1063/1.5135922
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Charge coupled device (CCD)-based thermoreflectance imaging using a "4-bucket" lock-in imaging algorithm is a well-established, powerful method for obtaining high spatial and thermal resolution two-dimensional thermal maps of optoelectronic, electronic, and micro-electro-mechanical systems devices. However, the technique is relatively slow, limiting broad commercial adoption. In this work, we examine the underlying limit on the image acquisition speed using the conventional "4-bucket" algorithm and show that the straightforward extension to an n-bucket technique by faster sampling does not address the underlying statistical bias in the data analysis and hence does not reduce the image acquisition time. Instead, we develop a modified "enhanced n-bucket" algorithm that halves the image acquisition time for every doubling of the number of buckets. We derive detailed statistical models of the algorithms and confirm both the models and the resulting speed enhancement experimentally, resulting in a practical means of significantly enhancing the speed and utility of CCD-based frequency domain, homodyne thermoreflectance imaging.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Parametric study of the frequency-domain thermoreflectance technique
    Xing, C.
    Jensen, C.
    Hua, Z.
    Ban, H.
    Hurley, D. H.
    Khafizov, M.
    Kennedy, J. R.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (10)
  • [2] Phonon hydrodynamics in frequency-domain thermoreflectance experiments
    Beardo, A.
    Hennessy, M. G.
    Sendra, L.
    Camacho, J.
    Myers, T. G.
    Bafaluy, J.
    Alvarez, F. X.
    PHYSICAL REVIEW B, 2020, 101 (07)
  • [3] High-speed contactless sintering characterization for printed electronics by frequency-domain thermoreflectance
    Rahman, Md Saifur
    Shahzadeh, Mohammadreza
    Rahman, Mizanur
    Pisana, Simone
    Grau, Gerd
    FLEXIBLE AND PRINTED ELECTRONICS, 2020, 5 (03):
  • [4] High-speed optical frequency-domain imaging
    Yun, SH
    Tearney, GJ
    de Boer, JF
    Iftimia, N
    Bouma, BE
    OPTICS EXPRESS, 2003, 11 (22): : 2953 - 2963
  • [5] A frequency-domain thermoreflectance method for the characterization of thermal properties
    Schmidt, Aaron J.
    Cheaito, Ramez
    Chiesa, Matteo
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (09):
  • [6] Noise characteristics of heterodyne/homodyne frequency-domain measurements
    Kang, Dongyel
    Kupinski, Matthew A.
    JOURNAL OF BIOMEDICAL OPTICS, 2012, 17 (01)
  • [7] Characterization of thin metal films via frequency-domain thermoreflectance
    Schmidt, Aaron J.
    Cheaito, Ramez
    Chiesa, Matteo
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (02)
  • [8] Anisotropic thermoreflectance thermometry: A contactless frequency-domain thermoreflectance approach to study anisotropic thermal transport
    Perez, Luis A.
    Xu, Kai
    Wagner, Markus R.
    Dorling, Bernhard
    Perevedentsev, Aleksandr
    Goni, Alejandro R.
    Campoy-Quiles, Mariano
    Alonso, M. Isabel
    Reparaz, Juan Sebastian
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (03):
  • [9] Frequency-Domain Transient Imaging
    Lin, Jingyu
    Liu, Yebin
    Suo, Jinli
    Dai, Qionghai
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (05) : 937 - 950
  • [10] Implementation of Multi-channel Concurrent Detection Homodyne Frequency-domain Diffuse Optical Imaging System
    Jun, Young Sik
    Baek, Woon Sik
    KOREAN JOURNAL OF OPTICS AND PHOTONICS, 2012, 23 (01) : 23 - 31