LA-Net: A Multi-Task Deep Network for the Segmentation of the Left Atrium

被引:32
作者
Uslu, Fatmatulzehra [1 ]
Varela, Marta [2 ]
Boniface, Georgia [3 ,4 ]
Mahenthran, Thakshayene [3 ,5 ]
Chubb, Henry [3 ,6 ]
Bharath, Anil A. [7 ]
机构
[1] Bursa Tech Univ, Dept Elect Elect Engn, TR-16310 Bursa, Turkey
[2] Imperial Coll London, Natl Heart & Lung Inst, London W12 0NN, England
[3] Kings Coll London, Div Biomed Engn & Imaging Sci, London SE1 7EH, England
[4] Darent Valley Hosp, Dept Gen Med, Canterbury DA2 8DA, Kent, England
[5] Kings Coll London, Dept Cardiol, London WC2R 2LS, England
[6] Lucile Packard Childrens Hosp, Stanford Hosp & Clin, Dept Pediat Cardiol, Palo Alto, CA 94304 USA
[7] Imperial Coll London, Bioengn Dept, London SW7 2AZ, England
关键词
Image segmentation; Decoding; Image edge detection; Cams; Magnetic resonance imaging; Task analysis; Shape; Squeeze-excitation networks; edge detection; U-Net; a trous convolution; image segmentation; cardiac MRI; ABLATION; CATHETER; MRI;
D O I
10.1109/TMI.2021.3117495
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Although atrial fibrillation (AF) is the most common sustained atrial arrhythmia, treatment success for this condition remains suboptimal. Information from magnetic resonance imaging (MRI) has the potential to improve treatment efficacy, but there are currently few automatic tools for the segmentation of the atria in MR images. In the study, we propose a LA-Net, a multi-task network optimised to simultaneously generate left atrial segmentation and edge masks from MRI. LA-Net includes cross attention modules (CAMs) and enhanced decoder modules (EDMs) to purposefully select the most meaningful edge information for segmentation and smoothly incorporate it into segmentation masks at multiple-scales. We evaluate the performance of LA-Net on two MR sequences: late gadolinium enhanced (LGE) atrial MRI and atrial short axis balanced steady state free precession (bSSFP) MRI. LA-Net gives Hausdorff distances of 12.43 mm and Dice scores of 0.92 on the LGE (STACOM 2018) dataset and Hausdorff distances of 17.41 mm and Dice scores of 0.90 on the bSSFP (in-house) dataset without any post-processing, surpassing previously proposed segmentation networks, including U-Net and SEGANet. Our method allows automatic extraction of information about the LA from MR images, which can play an important role in the management of AF patients.
引用
收藏
页码:456 / 464
页数:9
相关论文
共 36 条
[1]  
Ali H.M., 2018, HIGH RESOLUT NEUROIM, V14, P111, DOI DOI 10.5772/INTECHOPEN.72427
[2]  
[Anonymous], 2018, P INT WORKSH STAT AL
[3]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[4]   Pre-procedural predictors of atrial fibrillation recurrence after circumferential pulmonary vein ablation [J].
Berruezo, Antonio ;
Tamborero, David ;
Mont, Lluis ;
Benito, Begona ;
Tolosana, Jose Maria ;
Sitges, Marta ;
Vidal, Barbara ;
Arriagada, German ;
Mendez, Francisco ;
Matiello, Maria ;
Molina, Irma ;
Brugada, Josep .
EUROPEAN HEART JOURNAL, 2007, 28 (07) :836-841
[5]   Left Atrial Sphericity: A New Method to Assess Atrial Remodeling. Impact on the Outcome of Atrial Fibrillation Ablation [J].
Bisbal, Felipe ;
Guiu, Esther ;
Calvo, Naiara ;
Marin, David ;
Berruezo, Antonio ;
Arbelo, Elena ;
Ortiz-Perez, Jose ;
Maria de Caralt, Teresa ;
Maria Tolosana, Jose ;
Borras, Roger ;
Sitges, Marta ;
Brugada, Josep ;
Mont, Lluis .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2013, 24 (07) :752-759
[6]   2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: Recommendations for Patient Selection, Procedural Techniques, Patient Management and Follow-up, Definitions, Endpoints, and Research Trial Design [J].
Calkins, Hugh ;
Kuck, Karl Heinz ;
Cappato, Riccardo ;
Brugada, Josep ;
Camm, A. John ;
Chen, Shih-Ann ;
Crijns, Harry J. G. ;
Damiano, Ralph J., Jr. ;
Davies, D. Wyn ;
DiMarco, John ;
Edgerton, James ;
Ellenbogen, Kenneth ;
Ezekowitz, Michael D. ;
Haines, David E. ;
Haissaguerre, Michel ;
Hindricks, Gerhard ;
Iesaka, Yoshito ;
Jackman, Warren ;
Jalife, Jose ;
Jais, Pierre ;
Kalman, Jonathan ;
Keane, David ;
Kim, Young-Hoon ;
Kirchhof, Paulus ;
Klein, George ;
Kottkamp, Hans ;
Kumagai, Koichiro ;
Lindsay, Bruce D. ;
Mansour, Moussa ;
Marchlinski, Francis E. ;
McCarthy, Patrick M. ;
Mont, J. Lluis ;
Morady, Fred ;
Nademanee, Koonlawee ;
Nakagawa, Hiroshi ;
Natale, Andrea ;
Nattel, Stanley ;
Packer, Douglas L. ;
Pappone, Carlo ;
Prystowsky, Eric ;
Raviele, Antonio ;
Reddy, Vivek ;
Ruskin, Jeremy N. ;
Shemin, Richard J. ;
Tsao, Hsuan-Ming ;
Wilber, David ;
Ad, Niv ;
Cummings, Jennifer ;
Gillinov, A. Mark ;
Heidbuchel, Hein .
EUROPACE, 2012, 14 (04) :528-606
[7]   Deep Learning for Cardiac Image Segmentation: A Review [J].
Chen, Chen ;
Qin, Chen ;
Qiu, Huaqi ;
Tarroni, Giacomo ;
Duan, Jinming ;
Bai, Wenjia ;
Rueckert, Daniel .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
[8]  
Chen Chen, 2019, Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. 9th International Workshop, STACOM 2018. Held in Conjunction with MICCAI 2018. Revised Selected Papers: Lecture Notes in Computer Science (LNCS 11395), P292, DOI 10.1007/978-3-030-12029-0_32
[9]   Multiview Two-Task Recursive Attention Model for Left Atrium and Atrial Scars Segmentation [J].
Chen, Jun ;
Yang, Guang ;
Gao, Zhifan ;
Ni, Hao ;
Angelini, Elsa ;
Mohiaddin, Raad ;
Wong, Tom ;
Zhang, Yanping ;
Du, Xiuquan ;
Zhang, Heye ;
Keegan, Jennifer ;
Firmin, David .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 :455-463
[10]   Learning Active Contour Models for Medical Image Segmentation [J].
Chen, Xu ;
Williams, Bryan M. ;
Vallabhaneni, Srinivasa R. ;
Czanner, Gabriela ;
Williams, Rachel ;
Zheng, Yalin .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11624-11632