FLRT3 as a key player on chick limb development

被引:20
作者
Raquel Tomas, Ana [1 ,2 ]
Certal, Ana Catarina [1 ]
Rodriguez-Leon, Joaquin [1 ,2 ]
机构
[1] Inst Gulbenkian Ciencias, P-2780156 Oeiras, Portugal
[2] Univ Extremadura, Dept Anat Humana Biol Celular & Zool, Fac Med, Badajoz 06006, Spain
关键词
flrt3; AER; Limb development; Chicken; APICAL ECTODERMAL RIDGE; INTERDIGITAL CELL-DEATH; VERTEBRATE LIMB; MOLECULAR-BASIS; FGF; MOUSE; OUTGROWTH; EXPRESSION; EMBRYOS; AER;
D O I
10.1016/j.ydbio.2011.04.031
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Limb outgrowth is maintained by a specialized group of cells, the apical ectodermal ridge (AER), a thickening of the limb epithelium at its distal tip. It has been shown that fibroblast growth factor (FGF) activity and activation of the Erk pathway are crucial for AER function. Recently, FLRT3, a transmembrane protein able to interact with FGF receptors, has been implicated in the activation of ERK by FGFs. In this study, we show that flrt3 expression is restricted to the AER, co-localizing its expression with fgf8 and pERK activity. Loss-of-function studies have shown that silencing of flrt3 affects the integrity of the AER and, subsequently, its proper function during limb bud outgrowth. Our data also indicate that flrt3 expression is not regulated by FGF activity in the AER, whereas ectopic WNT3A is able to induce flrt3 expression. Overall, our findings show that flrt3 is a key player during chicken limb development, being necessary but not sufficient for proper AER formation and maintenance under the control of BMP and WNT signalling. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:324 / 333
页数:10
相关论文
共 66 条
[1]  
Ahn K, 2001, DEVELOPMENT, V128, P4449
[2]   Ectodermal Wnt3/β-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge [J].
Barrow, JR ;
Thomas, KR ;
Boussadia-Zahui, O ;
Moore, R ;
Kemler, R ;
Capecchi, MR ;
McMahon, AP .
GENES & DEVELOPMENT, 2003, 17 (03) :394-409
[3]   A comprehensive collection of chicken cDNAs [J].
Boardman, PE ;
Sanz-Ezquerro, J ;
Overton, IM ;
Burt, DW ;
Bosch, E ;
Fong, WT ;
Tickle, C ;
Brown, WRA ;
Wilson, SA ;
Hubbard, SJ .
CURRENT BIOLOGY, 2002, 12 (22) :1965-1969
[4]   The transmembrane protein XFLRT3 forms a complex with FGF receptors and promotes FGF signalling [J].
Böttcher, RT ;
Pollet, N ;
Delius, H ;
Niehrs, C .
NATURE CELL BIOLOGY, 2004, 6 (01) :38-U8
[5]   The roles of Fgf4 and Fgf8 in limb bud initiation and outgrowth [J].
Boulet, AM ;
Moon, AM ;
Arenkiel, BR ;
Capecchi, MR .
DEVELOPMENTAL BIOLOGY, 2004, 273 (02) :361-372
[6]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[7]   Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antagonism of BMPs by Gremlin [J].
Capdevila, J ;
Tsukui, T ;
Esteban, CR ;
Zappavigna, V ;
Belmonte, JCI .
MOLECULAR CELL, 1999, 4 (05) :839-849
[8]   Patterning mechanisms controlling vertebrate limb development [J].
Capdevila, J ;
Belmonte, JCI .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2001, 17 :87-132
[9]   Control of dorsoventral somite patterning by Wnt-1 and β-catenin [J].
Capdevila, J ;
Tabin, C ;
Johnson, RL .
DEVELOPMENTAL BIOLOGY, 1998, 193 (02) :182-194
[10]  
Carl M, 1999, DEVELOPMENT, V126, P5659