Melting of PCM inside a novel encapsulation design for thermal energy storage system

被引:54
作者
Mohaghegh, M. R. [1 ]
Alomair, Y. [1 ]
Alomair, M. [1 ]
Tasnim, S. H. [1 ]
Mahmud, S. [1 ]
Abdullah, H. [1 ]
机构
[1] Univ Guelph, Sch Engn, Guelph, ON N1G 2W1, Canada
关键词
Pear-shaped encapsulation; Phase change material; Thermal energy storage system; Melting; Transient heat transfer; PHASE-CHANGE MATERIALS; CHANGE HEAT-TRANSFER; NANO-PCM; CONVECTION; CONSTANT; SIMULATION; CONTAINER;
D O I
10.1016/j.ecmx.2021.100098
中图分类号
O414.1 [热力学];
学科分类号
摘要
Phase Change Materials (PCMs) encapsulated inside different shape and size enclosures have been playing an important role in designing thermal energy storage (TES) systems for a wide range of applications. In the present work, transient heat transfer and the melting process of n-octadecane PCM encapsulated in a novel Pear-Shaped Thermal Energy Storage (PS-TES) system with and without constraint are numerically investigated and verified with experimental visualizations. An adiabatic cylindrical rod, placed at the axis of symmetry of the pear-shaped enclosure, is used to create the constraint. A mathematical model is developed and numerically solved to study energy transport processes inside the proposed PS-TES systems. The heat transfer characteristics such as melt fraction, Nusselt number, and energy stored in the system and their temporal variation during the melting process are determined. The melting process is visualized numerically to track the solid-liquid interface during the melting process as well. Comparison of results from the unconstrained and constrained cases reveals that the existence of the adiabatic constraint inside the system decreases the melting rate, as the total time required to complete the melting process in the constrained melting (-178 min) is almost twice that of unconstrained melting (-97 min). The effect of the Rayleigh number on the melt fraction, Nusselt number, and the stored energy is studied and discussed as well. Furthermore, a comparison between the melt fraction results for pearshaped system and a convectional cylindrical container with the same height and same volume shows that the complete melting time for the PS-TES system (-97 min) is less compared to the one for the cylindrical case (-108 min). A comprehensive experimental setup is also developed using a constant temperature bath and thermal regulator to visualize melting images and track the melting front during the phase change process. Numerical images of heat transfer field and solid-liquid interface, as well as the temporal variation of melt fraction in both test cases, are compared with experimental visualizations, and an excellent agreement is reported.
引用
收藏
页数:20
相关论文
共 53 条
[1]   LOW-TEMPERATURE LATENT-HEAT THERMAL-ENERGY STORAGE - HEAT-STORAGE MATERIALS [J].
ABHAT, A .
SOLAR ENERGY, 1983, 30 (04) :313-332
[2]   Thermal energy storage performance of paraffin in a novel tube-in-shell system [J].
Akgun, Mithat ;
Aydm, Orhan ;
Kaygusuz, Kamil .
APPLIED THERMAL ENGINEERING, 2008, 28 (5-6) :405-413
[3]   Nano-PCM filled energy storage system for solar-thermal applications [J].
Al-Jethelah, Manar ;
Tasnim, Syeda Humaira ;
Mahmud, Shohel ;
Dutta, Animesh .
RENEWABLE ENERGY, 2018, 126 :137-155
[4]   Melting of nano-PCM in an enclosed space: Scale analysis and heatline tracking [J].
Al-Jethelah, Manar ;
Tasnim, Syeda Humaira ;
Mahmud, Shohel ;
Dutta, Animesh .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 119 :841-859
[5]   Building roof with conical holes containing PCM to reduce the cooling load: Numerical study [J].
Alawadhi, Esam M. ;
Alqallaf, Hashem J. .
ENERGY CONVERSION AND MANAGEMENT, 2011, 52 (8-9) :2958-2964
[6]   Review of solar air collectors with thermal storage units [J].
Alkilani, Mahmud M. ;
Sopian, K. ;
Alghoul, M. A. ;
Sohif, M. ;
Ruslan, M. H. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (03) :1476-1490
[7]   Effect of inclination angle during melting and solidification of a phase change material using a combined heat pipe-metal foam or foil configuration [J].
Allen, Michael J. ;
Sharifi, Nourouddin ;
Faghri, Amir ;
Bergman, Theodore L. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 80 :767-780
[8]   Analyses of Bio-Based Nano-PCM filled Concentric Cylindrical Energy Storage System in Vertical Orientation [J].
Alomair, Muath ;
Alomair, Yazeed ;
Tasnim, Syeda ;
Mahmud, Shohel ;
Abdullah, Hussein .
JOURNAL OF ENERGY STORAGE, 2018, 20 :380-394
[9]   Analysis of heat transfer and fluid flow during melting inside a spherical container for thermal energy storage [J].
Archibold, Antonio Ramos ;
Rahman, Muhammad M. ;
Goswami, D. Yogi ;
Stefanakos, Elias K. .
APPLIED THERMAL ENGINEERING, 2014, 64 (1-2) :396-407
[10]   A Cartesian grid solver for simulation of a phase-change material (PCM) solar thermal storage device [J].
Augspurger, Mike ;
Udaykumar, H. S. .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2016, 69 (03) :179-196