Periodic solutions of perturbed isochronous hamiltonian systems at resonance

被引:19
作者
Fabry, C
Fonda, A
机构
[1] Univ Trieste, Dipartimento Sci Matemat, I-34127 Trieste, Italy
[2] Univ Catholique Louvain, Inst Math, B-1348 Louvain, Belgium
关键词
periodic solution; hamiltonian systems; topological degree;
D O I
10.1016/j.jde.2005.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We look for periodic solutions of planar systems obtained by adding an asymptotically positively homogeneous nonlinear term to an isochronous hamiltonian system. Precise computations of the topological degree are obtained by elementary phase-plane analysis. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:299 / 325
页数:27
相关论文
共 14 条
[1]   Roots of unity and unbounded motions of an asymmetric oscillator [J].
Alonso, JM ;
Ortega, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 143 (01) :201-220
[2]   Periodic solutions of Lienard equations with asymmetric nonlinearities at resonance [J].
Capietto, A ;
Wang, ZH .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 :119-132
[3]  
Dancer E. N., 1976, Bulletin of the Australian Mathematical Society, V15, P321, DOI 10.1017/S0004972700022747
[4]   LANDESMAN-LAZER CONDITIONS FOR PERIODIC BOUNDARY-VALUE-PROBLEMS WITH ASYMMETRIC NONLINEARITIES [J].
FABRY, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 116 (02) :405-418
[5]   Nonlinear resonance in asymmetric oscillators [J].
Fabry, C ;
Fonda, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 147 (01) :58-78
[6]  
Fabry C, 2001, PROG NONLIN, V43, P253
[7]  
FABRY C, 2000, NANKAI SERIES PURE A, V6, P103
[8]  
FABRY C, IN PRESS ADV NONLINE
[9]   Positively homogeneous hamiltonian systems in the plane [J].
Fonda, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 200 (01) :162-184
[10]  
Fucik S., 1980, SOLVABILITY NONLINEA