Discovering Hidden Errors from Application Log Traces with Process Mining

被引:2
作者
Cinque, Marcello [1 ]
Della Corte, Raffaele [1 ]
Pecchia, Antonio [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Ingn Elettr & Tecnol Informaz, Via Claudio 21, I-80125 Naples, Italy
来源
2019 15TH EUROPEAN DEPENDABLE COMPUTING CONFERENCE (EDCC 2019) | 2019年
关键词
process mining; application log; trace; software errors; testing;
D O I
10.1109/EDCC.2019.00034
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Over the past decades logs have been widely used for detecting and analyzing failures of computer applications. Nevertheless, it is widely accepted by the scientific community that failures might go undetected in the logs. This paper proposes a measurement study with a dataset of 3,794 log traces obtained from normative and failure runs of the Apache web server. We use process mining (i) to infer a model of the normative log behavior, e.g., presence and ordering of messages in the traces, and (ii) to detect failures within arbitrary traces by looking for deviations from the model (conformance checking). Analysis is done with the Integer Linear Programming (ILP) Miner, Inductive Miner and Alpha++ Miner algorithms. Our measurements indicate that, although only around 18% failure traces contain explicit error keywords and phrases, conformance checking allows detecting up to 87% failures at high precision, which means that most of the errors are hidden across the traces.
引用
收藏
页码:137 / 140
页数:4
相关论文
共 12 条
[11]  
van Dongen BF, 2005, LECT NOTES COMPUT SC, V3536, P444
[12]   Mining process models with non-free-choice constructs [J].
Wen, Lijie ;
van der Aalst, Wil M. P. ;
Wang, Jianmin ;
Sun, Jiaguang .
DATA MINING AND KNOWLEDGE DISCOVERY, 2007, 15 (02) :145-180