Discovering Hidden Errors from Application Log Traces with Process Mining

被引:2
|
作者
Cinque, Marcello [1 ]
Della Corte, Raffaele [1 ]
Pecchia, Antonio [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Ingn Elettr & Tecnol Informaz, Via Claudio 21, I-80125 Naples, Italy
来源
2019 15TH EUROPEAN DEPENDABLE COMPUTING CONFERENCE (EDCC 2019) | 2019年
关键词
process mining; application log; trace; software errors; testing;
D O I
10.1109/EDCC.2019.00034
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Over the past decades logs have been widely used for detecting and analyzing failures of computer applications. Nevertheless, it is widely accepted by the scientific community that failures might go undetected in the logs. This paper proposes a measurement study with a dataset of 3,794 log traces obtained from normative and failure runs of the Apache web server. We use process mining (i) to infer a model of the normative log behavior, e.g., presence and ordering of messages in the traces, and (ii) to detect failures within arbitrary traces by looking for deviations from the model (conformance checking). Analysis is done with the Integer Linear Programming (ILP) Miner, Inductive Miner and Alpha++ Miner algorithms. Our measurements indicate that, although only around 18% failure traces contain explicit error keywords and phrases, conformance checking allows detecting up to 87% failures at high precision, which means that most of the errors are hidden across the traces.
引用
收藏
页码:137 / 140
页数:4
相关论文
共 50 条
  • [1] Discovering Process Model from Incomplete Log using Process Mining
    Zakarija, Ivona
    Skopljanac-Macina, Frano
    Blaskovic, Bruno
    PROCEEDINGS OF ELMAR-2015 57TH INTERNATIONAL SYMPOSIUM ELMAR-2015, 2015, : 117 - 120
  • [2] Discovering expressive process models by clustering log traces
    Greco, Gianluigi
    Guzzo, Antonella
    Pontieri, Luigi
    Sacca, Domenico
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2006, 18 (08) : 1010 - 1027
  • [3] Bot Log Mining: Using Logs from Robotic Process Automation for Process Mining
    Egger, Andreas
    ter Hofstede, Arthur H. M.
    Kratsch, Wolfgang
    Leemans, Sander J. J.
    Roeglinger, Maximilian
    Wynn, Moe Thandar
    CONCEPTUAL MODELING, ER 2020, 2020, 12400 : 51 - 61
  • [4] Discovering Structural Errors From Business Process Event Logs
    Song, Wei
    Chang, Zhen
    Jacobsen, Hans-Arno
    Zhang, Pengcheng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (11) : 5293 - 5306
  • [5] Case of Process Mining from Business Execution Log Data
    Bae, Joonsoo
    Kang, Young Ki
    INTELLIGENT DECISION TECHNOLOGIES (IDT'2012), VOL 1, 2012, 15 : 419 - 425
  • [6] OBDA for Log Extraction in Process Mining
    Calvanese, Diego
    Kalayci, Tahir Emre
    Montali, Marco
    Santoso, Ario
    REASONING WEB: SEMANTIC INTEROPERABILITY ON THE WEB, 2017, 10370 : 292 - 345
  • [7] Discovering configuration workflows from existing logs using process mining
    Belén Ramos-Gutiérrez
    Ángel Jesús Varela-Vaca
    José A. Galindo
    María Teresa Gómez-López
    David Benavides
    Empirical Software Engineering, 2021, 26
  • [8] Discovering configuration workflows from existing logs using process mining
    Ramos-Gutierrez, Belen
    Jesus Varela-Vaca, Angel
    Galindo, Jose A.
    Teresa Gomez-Lopez, Maria
    Benavides, David
    EMPIRICAL SOFTWARE ENGINEERING, 2021, 26 (01)
  • [9] Discovering Business Rules through Process Mining
    Crerie, Raphael
    Baiao, Fernanda Araujo
    Santoro, Flavia Maria
    ENTERPRISE, BUSINESS-PROCESS AND INFORMATION SYSTEMS MODELING, 2009, 29 : 136 - 148
  • [10] Discovering commute patterns via process mining
    Yousfi, Alaaeddine
    Weske, Mathias
    KNOWLEDGE AND INFORMATION SYSTEMS, 2019, 60 (02) : 691 - 713