Gap switching in metal-organic coordination chains

被引:1
|
作者
Denawi, Hassan [1 ,2 ,3 ]
Abel, Mathieu [1 ]
Boukortt, Abdelkader [4 ]
Siri, Olivier [5 ]
Hayn, Roland [1 ]
机构
[1] Aix Marseille Univ, CNRS, IM2NP UMR 7334, F-13397 Marseille, France
[2] CEA Paris Saclay, Serv Rech Metallurg Phys, F-91191 Gif Sur Yvette, France
[3] Univ Toulouse, Ctr Natl Rech Sci CNRS, Ctr Elaborat Mat & Etud Structurales CEMES, F-31055 Toulouse, France
[4] Abdelhamid Ibn Badis Univ Mostaganem, Lab Elaborat & Caracterisat Phys Mecan & Metallur, Route Natl 11, Kharrouba 27000, Mostaganem, Algeria
[5] Aix Marseille Univ, CNRS, CINAM, UMR 7325, Campus Luminy, F-13288 Marseille, France
关键词
New magnetic Metal-organic coordination; Chains; Band gaps; Physical properties; Nano electronics and spintronics applications; Density functional theory (DFT) calculations; HALF-METALLICITY; SPINTRONICS; SPIN;
D O I
10.1016/j.jmmm.2022.169561
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We predict two switchable one-dimensional (1D) spin-polarized semiconductors based on metal-organic coordination chains constructed out of Fe, V, and zwitterionic quinone (ZQ) molecules using first-principle density functional theoretical analysis. The Fe-ZQ coordination chain can be converted from a semiconductor to a half-metal when oxidized by chlorine (Cl). Upon chlorination, the magnetic moment of the Fe-ZQ is increased from 4 mu(B) to 5 mu(B), per iron atom. In addition, the bimetallic (Fe-ZQ-V-ZQ) ferromagnetic semiconducting coordination chain with a very small energy gap of only 90 meV can be converted to an antiferromagnetic semiconductor with a large gap of more than 1 eV when oxidized by chlorine. Its magnetic moment is found to be 8 mu(B) per heterobimetallic unit (Fe and V) after chlorination, and 7 mu(B) without chlorine. These unique properties, namely a switchable or reversible electronic and magnetic characteristics with a transition between different semiconducting states, make these coordination chains to be highly promising candidates for specific applications as multi-functional switch in nanoelectronics and spintronics.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Open metal-organic framework containing cuprate chains
    Tran, DT
    Fan, XJ
    Brennan, DP
    Zavalij, PY
    Oliver, SRJ
    INORGANIC CHEMISTRY, 2005, 44 (18) : 6192 - 6196
  • [22] High Electrical Conductivity of Single Metal-Organic Chains
    Ares, Pablo
    Amo-Ochoa, Pilar
    Soler, Jose M.
    Jose Palacios, Juan
    Gomez-Herrero, Julio
    Zamora, Felix
    ADVANCED MATERIALS, 2018, 30 (21)
  • [23] Lanthanide-directed metal-organic coordination networks
    Parreiras, Sofia O. O.
    Gallego, Jose M.
    Ecija, David
    CHEMICAL COMMUNICATIONS, 2023, 59 (58) : 8878 - 8893
  • [24] Applications and advances in coordination cages: Metal-Organic Frameworks
    Katoch, Abhishek
    Goyal, Navdeep
    Gautam, Sanjeev
    VACUUM, 2019, 167 : 287 - 300
  • [25] Coordination change, lability and hemilability in metal-organic frameworks
    Morris, Russell E.
    Brammer, Lee
    CHEMICAL SOCIETY REVIEWS, 2017, 46 (17) : 5444 - 5462
  • [26] Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks
    Prakash, M. Jaya
    Lah, Myoung Soo
    CHEMICAL COMMUNICATIONS, 2009, (23) : 3326 - 3341
  • [27] Coordination Polymers: From Metal-Organic Frameworks to Spheres
    Champness, Neil R.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (13) : 2274 - 2275
  • [28] Reversible switching of arylazopyrazole within a metal-organic cage
    Hanopolskyi, Anton, I
    De, Soumen
    Bialek, Michal J.
    Diskin-Posner, Yael
    Avram, Liat
    Feller, Moran
    Klajn, Rafal
    BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, 2019, 15 : 2398 - 2407
  • [29] Reversible structural switching of a metal-organic framework by photoirradiation
    Nikolayenko, Varvara I.
    Herbert, Simon A.
    Barbour, Leonard J.
    CHEMICAL COMMUNICATIONS, 2017, 53 (81) : 11142 - 11145
  • [30] Resistive Switching Nanodevices Based on Metal-Organic Frameworks
    Wang, Zhengbang
    Nminibapiel, David
    Shrestha, Pragya
    Liu, Jianxi
    Guo, Wei
    Weidler, Peter G.
    Baumgart, Helmut
    Woell, Christof
    Redel, Engelbert
    CHEMNANOMAT, 2016, 2 (01): : 67 - 73