Anisotropic solution for compact star in 5D Einstein-Gauss-Bonnet gravity

被引:15
|
作者
Maurya, S. K. [1 ]
Pradhan, Anirudh [2 ]
Banerjee, Ayan [3 ]
Tello-Ortiz, Francisco [4 ]
Jasim, M. K. [1 ]
机构
[1] Univ Nizwa, Coll Arts & Sci, Dept Math & Phys Sci, Nizwa, Oman
[2] GLA Univ, Inst Appl Sci & Humanities, Dept Math, Mathura 281406, Uttar Pradesh, India
[3] Univ KwaZulu Natal, Astrophys & Cosmol Res Unit, Private Bag X54001, ZA-4000 Durban, South Africa
[4] Univ Antofagasta, Fac Ciencias Basicas, Dept Fis, Casilla 170, Antofagasta, Chile
关键词
EGB gravity; compact stars; exact solution; BLACK-HOLES; SYMMETRICAL-SOLUTIONS; NEUTRON-STAR; SPHERES; INSTABILITY; WORMHOLES; TENSOR; SPACE; CLOUD;
D O I
10.1142/S021773232150231X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In astronomy, the study of compact stellar remnants - white dwarfs, neutron stars, black holes - has attracted much attention for addressing fundamental principles of physics under extreme conditions in the core of compact objects. In a recent argument, Maurya et al. [Eur. Phys. J. C 77, 45 (2017)] have proposed an exact solution depending on a specific spacetime geometry. Here, we construct equilibrium configurations of compact stars for the same spacetime that make it interesting for modeling high density physical astronomical objects. All calculations are carried out within the framework of the five-dimensional Einstein-Gauss-Bonnet gravity. Our main interest is to explore the dependence of the physical properties of these compact stars depending on the Gauss-Bonnet coupling constant. The interior solutions have been matched to an exterior Boulware-Deser solution for 5D spacetime. Our finding ensures that all energy conditions hold, and the speed of sound remains causal, everywhere inside the star. Moreover, we study the dynamical stability of stellar structure by taking into account the modified field equations using the theory of adiabatic radial oscillations developed by Chandrasekhar. Based on the observational data for radii and masses coming from different astronomical sources, we show that our model is compatible and physically relevant.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Anisotropic Strange Star in 5D Einstein-Gauss-Bonnet Gravity
    Jasim, Mahmood Khalid
    Maurya, Sunil Kumar
    Singh, Ksh Newton
    Nag, Riju
    ENTROPY, 2021, 23 (08)
  • [2] Celestial attributes of hybrid star in 5D Einstein-Gauss-Bonnet gravity
    Karmakar, Akashdip
    Rej, Pramit
    CHINESE JOURNAL OF PHYSICS, 2024, 87 : 155 - 173
  • [3] Properties of relativistic star in 5D Einstein-Gauss-Bonnet gravity
    Bhattacharya, Soumik
    Thirukkanesh, Suntharalingam
    Sharma, Ranjan
    MODERN PHYSICS LETTERS A, 2023, 38 (03)
  • [4] Exploring Physical Properties of Gravitationally Decoupled Anisotropic Solution in 5D Einstein-Gauss-Bonnet Gravity
    Maurya, S. K.
    Tello-Ortiz, Francisco
    Govender, M.
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2021, 69 (10):
  • [5] Minimally deformed charged stellar model by gravitational decoupling in 5D Einstein-Gauss-Bonnet gravity
    Maurya, S. K.
    Banerjee, Ayan
    Pradhan, Anirudh
    Yadav, Dhananjay
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (06):
  • [6] The existence of Quintessence star models in the lower mass gap within 5D Einstein-Gauss-Bonnet gravity
    Bhar, Piyali
    Das, Krishna Pada
    Debnath, Ujjal
    CHINESE JOURNAL OF PHYSICS, 2024, 87 : 465 - 485
  • [7] Polytropic stellar structure in 5D Einstein-Gauss-Bonnet gravity
    Karmakar, Akashdip
    Debnath, Ujjal
    Rej, Pramit
    CHINESE JOURNAL OF PHYSICS, 2024, 90 : 1125 - 1142
  • [8] Inhomogeneous dust collapse in 5D Einstein-Gauss-Bonnet gravity
    Jhingan, S.
    Ghosh, Sushant G.
    PHYSICAL REVIEW D, 2010, 81 (02):
  • [9] Minimally deformed anisotropic stars by gravitational decoupling in Einstein-Gauss-Bonnet gravity
    Maurya, S. K.
    Pradhan, Anirudh
    Tello-Ortiz, Francisco
    Banerjee, Ayan
    Nag, Riju
    EUROPEAN PHYSICAL JOURNAL C, 2021, 81 (09):
  • [10] Isotropic and anisotropic neutron star structure in 4D Einstein-Gauss-Bonnet Gravity
    Bordbar, Gholam Hossein
    Mazhari, Mohammad
    Poostforush, Ahmad
    EUROPEAN PHYSICAL JOURNAL PLUS, 2024, 139 (02):