Validation of computational fluid dynamics simulations for atria geometries

被引:44
|
作者
Rundle, C. A. [1 ]
Lightstone, M. F. [1 ]
Oosthuizen, P. [2 ]
Karava, P. [3 ,4 ]
Mouriki, E. [5 ]
机构
[1] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada
[2] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada
[3] Purdue Univ, Sch Civil Engn, W Lafayette, IN 47907 USA
[4] Purdue Univ, Div Construct Engn & Management, W Lafayette, IN 47907 USA
[5] Concordia Univ, Dept Bldg Civil & Environm Engn, Montreal, PQ H3G 1M8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CFD; Atria; Validation; Building simulation; Solar energy; TURBULENT NATURAL-CONVECTION; VENTILATION;
D O I
10.1016/j.buildenv.2010.12.019
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Atria are becoming an increasingly common feature of new buildings. They are often included for their aesthetic appeal; however, their effect on building indoor environment can be significant. Building simulation tools have the potential to assist designers in enhancing energy efficiency by providing information on the temperature and velocity fields inside the atrium for specified geometries and ambient conditions. The unique nature of the physical phenomena that govern the complex flows in atria, however, are not usually considered in traditional building energy simulation programs. These physical phenomena include turbulent natural convection, radiative heat transfer and conjugate heat transfer. Computational fluid dynamics (CFD) has the potential for modeling fluid flow and heat transfer resulting from the phenomena; however, careful validation is required in order to establish the accuracy of predictions. This paper provides a systematic validation of a commercial CFD code against experimental measurements of the underlying physical phenomena. The validation culminates in the simulation of an existing atrium. This work indicates that CFD can be used to successfully simulate the heat transfer and fluid flow in atria geometries and provides recommendations regarding turbulence and radiative heat transfer modeling. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1343 / 1353
页数:11
相关论文
共 50 条
  • [21] Projection Framework for Interfacial Treatment for Computational Fluid Dynamics/Computational Structural Dynamics Simulations
    Joseph, Nishit
    Carrese, Robert
    Marzocca, Pier
    AIAA JOURNAL, 2021, 59 (06) : 2070 - 2083
  • [22] Computational fluid dynamics simulations of the human lung: An overview
    Martonen, T
    Hwang, D
    Guan, X
    Fleming, J
    SIMULATION MODELLING IN BIOENGINEERING, 1996, : 69 - 78
  • [23] Application of computational fluid dynamics simulations in food industry
    Szpicer, Arkadiusz
    Binkowska, Weronika
    Wojtasik-Kalinowska, Iwona
    Salih, Salih Mustafa
    Poltorak, Andrzej
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2023, 249 (06) : 1411 - 1430
  • [24] Application of computational fluid dynamics simulations in food industry
    Arkadiusz Szpicer
    Weronika Bińkowska
    Iwona Wojtasik-Kalinowska
    Salih Mustafa Salih
    Andrzej Półtorak
    European Food Research and Technology, 2023, 249 : 1411 - 1430
  • [25] Toward establishing credibility in computational fluid dynamics simulations
    Rizzi, A
    Vos, J
    AIAA JOURNAL, 1998, 36 (05) : 668 - 675
  • [26] Proppant placement in complex fracture geometries: A computational fluid dynamics study
    Gong, Yiwen
    Mehana, Mohamed
    El-Monier, Ilham
    Viswanathan, Hari
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 79
  • [27] Simulations of a LDPE reactor using computational fluid dynamics
    Read, NK
    Zhang, SX
    Ray, WH
    AICHE JOURNAL, 1997, 43 (01) : 104 - 117
  • [28] Computational Fluid Dynamics Simulations of Hemodynamics in Plaque Erosion
    Campbell I.C.
    Timmins L.H.
    Giddens D.P.
    Virmani R.
    Veneziani A.
    Rab S.T.
    Samady H.
    McDaniel M.C.
    Finn A.V.
    Taylor W.R.
    Oshinski J.N.
    Campbell, I. C. (iancampbell@gatech.edu), 1600, Springer Science and Business Media, LLC (04): : 464 - 473
  • [29] Computational fluid dynamics modelling of multiphase flows in double elbow geometries
    Ogunsesan, Oluwademilade Adekunle
    Hossain, Mamdud
    Droubi, Mohamad Ghazi
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2021, 235 (06) : 1835 - 1846
  • [30] Prediction of Asphaltene Deposition Dynamics in Various Microfluidic Geometries Using Computational Fluid Dynamics
    Mohammadghasemi, Hossein
    Mozaffari, Saeed
    Kalfati, Milad Shakouri
    Ghasemi, Homa
    Nazemifard, Neda
    ENERGY & FUELS, 2024, 38 (09) : 7786 - 7800